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A two-dimensional baroclinic model of the
atmosphere adapted for description of the dynam-
ics of ultralong waves was formulated in [1, 2].
However, the results obtained there were, strictly
speaking, valid only in the special case of a
neutrally stratified atmosphere in which the lapse
rate y=-o¢I/jo: is equal to the adiabatic lapse rate
Y, = g/cp. In reality, however, the vertical

stratification of the atmosphere is stable. The
temperature of the air varies with height in
rather complex fashion, with y=-dT/vz=%:1. in the
troposphere, in which most of its mass is concen-
trated. It would therefore be interesting to
establish the significance of the temperature
stratification of the atmosphere for the dynamics
of ultralong waves.

We shall confine ourselves in this paper to
a polytropic model of the atmosphere in which the
parameter y is, along with the weighted-average
temperature of an air column and the surface pres-
sure, an unknown function that depends on the
horizontal coordinates and on time. As in [1, 2],
the approximation of geostrophic motions of the
second kind will be used to investigate the ultra-
long waves. In this case, the dynamic equation
system has the form

]
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Here f is the Coriolis parameter, cp is the spe-

cific heat at constant pressure, R is the gas
constant, v is the velocity vector, n is the unit
vector normal to the surface of the earth, g is
the gravity vector, p, p, and T are the pressure,
density, and temperature fields, and ¢ is the
heat flux divergence.

Let us investigate the adiabatic case. We
introduce local Cartesian coordinates: & in-
creases eastward, y northward, and z vertically
upward. Averaging the equations of continuity,
thermodynamics, and motion over the entire thick-
ness of the atmosphere, in much the same way as
was done in [3, 4], we obtain evolution equations

for o= jpd:=po/g and T=ijdz/E (po is the surface
A A

0001-4338/84/1911-0013%$18.00/1

pressure) and a diagnostic relation connecting

?::jvpdﬂﬁ with p and 7. The equation for Yy can
A

be obtained by averaging the dynamic equation dif-
ferentiated over z, recognizing that T=T(z, y, t)—
Yz, y, )z, To=T(1+RY/g) (To is the surface temperature).
Eliminating the velocity from the resulting equa-
tions, we can finally write the system of equations

6T RTky .  ReTks | RT
—t ——(p, )+ ——(p, ) - — (T, 7)
at fp 1gpk: feke

Y
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dp BR adpT
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where B is the meridional gradient of the Coriolis
parameter, T=R/c,. ki=1+Ry/g, k.=1+2Ry/g, ks=Ry/e,
iko=1—=1/Ya, (4, B)=(dA/dz) (3B/dy) ~(9A/3y) (9B/dz).

Let us find stationary solutions of (2).
Simple manipulation yields

P k a é
16p7'(_1—k‘67 61)+M°‘(k,—7—RT 1)=0’
T

p 9y dz oz f oz gk, oz
4 8pT 4oy gk OT apT
- (—1+——‘——)=0, RN &)
p 06y \oz RT oz oz

Expressing 91/0z in terms of o7/dz from the second
equation of system (3) and substituting in the
first equation, we have

T o P! &, dp okike 7 0pT
~ e
oz

ot oy o 9y RTp® oy fok: oy
) ®
oIk a ATk, 0
o BTk 90 PRk o1 }= 0.
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Fig. 1. Diagram of stability of zonal flow to ultralong
waves as a function of average zonal flow velocity U0 and

temperature stratification parameter YO/Ya' The region of

instability is shaded.

One of the stationary solutipns is then obtained BRT ok, ¢ TBRT ok, Tk, 1
at once:*  oT/or=0, 0y/0z=0, 0p/dz=0 or T=Ta(y), + c{ o [ . (z+k3+ o (zk, _Z)) —m(2+rk.+3k;)] +
PN . = -~ 2
Y=10(y), p=po(y),. where the function To(y), To(y), Poly) ok o oT ok Foat
are arbitrary and independent. . BRToksaz Bloar  Wokiar asez ket |
We linearize system (2) with respect to per- f k2 ks ke L
turbations 7', y’, and p' superimposed on the sta- 2IBRTok2kia;  BRToay N . 2Tk ykesks N
tionary solution obtained above: + ke T ("”‘s 2Tkaks o )}
) (6)
_fﬂ_ pRT, Ik, + 2k ky ) +agtas _0_1"__ . ﬁRTokx"’Uoz- T, (BRT,) 2k, 2k, N 2T2(BRT o) 3k 2ksk 2 _
at P ko oz f2k, ks 1ok2®
T T Tkik ap’ RT ok
- [u e 2 (e R Bt (342 Do 20,01+ Dohsas 1 +
Po 7 k2 dx
Tok ay’ To)? r kykiasT Thik
_'_FT-'B- Uo- TBRT, l+a']_1=0, + (BRT.) [ kel l. a2 (3+2k,+2k;’)] -0,
Yaka ks oz ks k2 k2
ay’ ks T'BRT oks ksay 4 9y Tpgkiky  Yokiar, q 0T
’;T'*j; [UD“'_”F"""k:'] ar'*[ Pk, + T, P The zonal flow is unstable or stable with re-
IBeT ke ikok i 0! spect to long waves depending on whether the dis-
_ [ BeTo "‘_.T“'a’]_£_=0, criminant of the cubic equation (6) is positive or
Ppokz Tpo oz negative. Figure 1 shows the regions of stability
" ) and instability (shaded) of the zonal flow as they
:ﬂi__ﬁRpoif__BRTof£L==0 (5) depend on the average velocity of that flow and
ot 2 ox @ oz the numerical value of the lapse rate.* We see

that the neutral curve passes through the region in
- which the actual values of Yo and Uo are concen-
Here ag=(RTok:/fpc)8po/dy, az=(TRPo/fYak:)Ys/dy, and U. is

0 trated (open circle in Fig. 1), and thus that our
the average zonal wind calculated from the formu- model admits of growth of ultralong waves due to
la Uo=—(R/fpo)#pTo/dy. We seek the solution of (5) breakup of an existing zonal flow. We note (see

in the form (7', ¥, p')=(T, Y, p) exp [tk(z—ct)]. From the
compatibility condition of the system we obtain
the characteristic equation

f*"{‘ﬁ‘[BRT"(M+3rko-Uo] +(1+3k901+1w} + *Here and in all of the calculations presented

ke L 7 ‘2 below, aj) and aj have been assumed to equal zero.
This assumption does not qualitatively affect the

_ nature of the results obtained and has very little
effect on quantitative estimates, since the terms

*The system has two more stationary solu- that contain a; and ap or combinations thereof as
tions, which we shall not consider because they multipliers are at least an order of magnitude
are obviously without physical content. smaller than the remaining terms of Eq. (6).
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Fig. 2.

Real part of phase velocity of ultralong waves c,

as functions of a) average zonal flow velocity 'Te (Yo/Ya=%/s)
and b) temperature stratification parameter /1. (Uo=10 m/s).

Fig. 1) the existence of a region of absolute sta-

bility at -32 m/s < U, < 0, in agreement with the

0
result of [5]. Figure 2 shows how the real part
of the phase velocity of the ultralong wave de-
pends on the average zonal-flow velocity U0 and

the ratio YO/Ya for all three modes described by

our model, which corresponds to the three charac-
teristic values (cl, yo c3). Within the segments
ab, the characteristic values cz and 03 become

The real parts of ¢, and ¢

2 3
are positive for real YO and BO’ i.e., the modes

complex-conjugate.

corresponding to them shift toward the east. A
growing mode corresponds to the characteristic

value ey and has a characteristic growth time of

five - eight days (depending on the average vel-

ocity of the zonal flow) at a wavelength of ~15000
km. The figure shows that the mode corresponding
to 2 is neutral everywhere for the observed val-

ues, and that its characteristics are nearly inde-
pendent of stratification.

The above results indicate that a noncontra-
dictory two-dimensional baroclinic model that
describes a broader class of atmospheric motions
than the corresponding model in [1, 2] can be
derived by averaging the equations of a polytropic
atmospheric model over height. We note that in
setting (s y. )=const=y.. we were forced to abandon
satisfaction of the exact boundary condition (of
the heat-input equation) at the surface of the

earth, as was done in [4] in derivation of an
atmospheric model with two parameters on the ver-
tical. Otherwise we would have an artificial
diagnostic relation between the thermohydrodynamic
variables that would impose severe limitations on
the class of possible atmospheric motions. Im
the case of our model, the condition 7y=const= Y.
results in merging of the two modes corresponding

to the characteristic values c2 and 03 into a

single mode (cz', which is represented by the

dashed curve in Fig. 2) and, accordingly, in
elimination of the instability region shown on the
right in Fig. 1. At the same time, we see from

Fig. 2 that the phase velocity 02' does not differ

strongly from the actual velocities e, and cy for

realistic values of the lapse rate and the average
zonal wind velocity. If, therefore, we consider a
model in which there is a stronger instability of
nature other than that used to the variability of
the parameter y and if the region of the instabil-
ity overlaps the region indicated on the right in
Fig. 1 to a significant extent, it will be possi-
ble to use the simplification y = comnst.

In conclusion, the author thanks M. V. Kur-
ganskiy for his untiring interest in the work.
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