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Dynamics of Ultralong Wave in a Two-Dimensional

Baroclinic Atmospheric Model

I. A. PISNICHENKO
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An investigation of ultralong waves is made in the planetary-scale geo- ! h:
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strophic motion approximation (Kibel number ~10-%*) using the height-gver-
aged equations of hydrothermodynamics, which take into account the hbri-

zontal baroclinicity effect.
for the linear problem:
waves, moving eastward.

Two types of wave solutions are obtained-f9€.
(1) fast waves, propagating westward, (2) slow
The relationship between the amplitudes of these
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waves is investigated as a function of the form of the initial perturba-

tion.

The stationary regime, which arises in the system due to the action

of heat sources and sinks that are both zonal and varying with longitude
(because of nonuniform heating of the continents and oceans), is examined.
It is shown that the accomodation of the ultralong waves to the long-term
climatic variations of external conditions is achieved primarily because

of the eastward slow wave component.

As first noted in [1], we must distinguish
between two types of large-scale quasigeostrophic
motions. According to the terminology proposed
in [2], geostrophic motions of the first type
include those whose characteristic horizontal
scale L ~10°m, while geostrophic motions of the
second type are those for which L~10" m. Besides
characteristic horizontal scales, these two types
of motions have several other distinguishing fea-
tures. In particular, the relationship between
the vertical component of the relative eddy £ and
the horizontal divergence D for the first type has
the form {>»D, while the second &=D. Accordingly,
the filtered equations that are employed to de-
scribe these motions are different. Namely, for
the description of motions of the second type in
the Euler equations we can ignore relative accel-
erations compared with Coriolis accelerations,
i.e., we can replace these equations by the diag-
nostic relations [1-3]. In this case the equa-
tions of continuity and thermodynamics remain
unchanged [1-3]. Such equations were used in [k4]
to study the dynamics of planetary atmospheric
perturbations within the framework of the two- and
three-level model, taking only vertical baroclin-
icity into account. However, it already follows
from [1] that the expansion of the eddy equation
in terms of the Kibel parameter it is necessary to
take account of terms, which describe the horizon-
tal baroclinicity, in the case of planetary-scale
motions even in the zero approximation. Let us
note that the need to take account of terms de-
scribing the horizontal baroclinicity effect in
studies of planetary atmospheric motions was first
pointed out in [5].
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The present paper is devoted to an investiga-
tion of the dynamics of ultralong waves. The
height-averaged geostrophic equations of the second
type, which take the horizontal baroclinicity
effect into account, are used as the model.
investigation is carried out in the 8-plane
approximation.

1. Using a procedure for height-averaging the
equations of hydrothermodynamics that is analogous
to that in [6], we obtain the system of equations

The

av R
—JT —Van= - ;— \" (Tm) +Fd’

M L my.V=0, (1)
at

ar
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Here Vis the horizontal velocity, weight-averaged
over a vertical column of air; T is the weight-
averaged temperature; m=p(0, z, y, t)/ps; Ps=1000 mbar;
p(0,z,y,t) is the surface pressure; R is the gas
constant; ¢ is the specific heat of air at con-
stant pressure; Y=R/cy; f=ftPy is the Coriolis par-
ameter; mn is a unit vector normal to the earth's
surface; Wr=3-10°m2/sec is the horizontal turbulent
heat diffusion coefficient; Fq4 is the frictional
force; Q are nonadiabatic heat sources. (Let us
note that the third equation of the system (1) was
first obtained in [7]).
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The geostrophic equations of the second type,
corresponding to the system (1), are

—VXnf=——V(Tm)+F,,
dm
—_—t V=
= mV-V=0, (2)

T

Let us show that (for an adiabatic nonviscous
atmosphere) the solutions of the linearized sys-
tem (1) at sufficiently small wave numbers differ
very little from the corresponding solutions of
the linearized system (2).

We linearize the system (1) with respect to
To=To(y), me=1, Us=—(R/}s)8T/dy. We look for the
solutions for perturbations in the form

i (kx—at), (3)

u
v
m

T

N ¥y @ &

The fact that only motions along the x axis are
considered does not alter the basic conclusion,

but it does simplify the calculations considerably.

After substituting (3) into the equations of the
linear system obtained from (1) and using the
equation for the velocity eddy, we will have

ie (Usk—w) G—foi+ikRT;m+ikRT =0,
- a~ A T, -
ikfou—e (Usk—o) kv+pv—iR -—?!—IL km=0,
(%)
ika+i(Usk—w) m=0,

~ 0T, . "
ikyTou+ 7 v+i(Uk—w) T=0.
Yy

The parameter € assumes values of 1 or 0. The
value e=0 means that the first equation of the
system (1) is replaced by the diagnostic relation

vxnf=-f-:-\7(rm). (5)

The system (4) has a nontrivial solution if its
determinant is equal to zero. Expanding the
determinant and introducing the notations

(1+y) RTymc?, —Ra—z“-=v.fo, (6)

ka—(l)=Z,
we obtain

2 L2p 2 p g2 2
(eZ—kco)(eZ——k—)Z 12 (Z—Usk)* =0, 1)

For e=0 Eq. (7) reduces to a second order equation

7 co’pk+2U [k 24U, =0, (8)
fd
Its solution is
o Bk "ﬂ‘k2 c,’on
Z,,= V i 7 + Uk (9)
or for w
cﬂzp 4fo=U,,
=——{1zx +— k.
04,2 2[02 (1 Vi Cozﬂ ) k (10)

Let us find the approximate values of the roots of

(7) fore=1. If |Z|>p/k, |Z}>U.k, then we can £
write Eq. (7) thus: i
Z(Z~Ked)~ 12 =0 (11) i
and é
0= (Uo:i:Vc., ’]:: )& (12) ”
if Udk<|Z|<kes then ;
(z - %) Kot +17Z=0 (13)
and
03=U°k__k’+—i::/c7; (14)

if |Z| Uk, |Z|<p/k, |Z| %cik, then

FUk

Z—
)

=0 (15)

O’Ullz
- (U,,_ ,c.fs )k. (16)

Let us note that the slow waves ®.(10) and
w;(16), moving with a velocity that is much smaller
than the velocity of the Rossby waves, correspond
to the baroclinic mode of the two-level atmospheric
model [8].

Figure 1 shows the dispersion curves for the
cases e=(0 and e=1. For k<1.5-10-" m~! the shape of
curves 1 and 2 in Fig. 1, a almost coincides with
the shape of curves 3 and L4 in Fig. 1, b; this can
also be seen from Egs. (10), (14), and (16). Thus,
we have shown that in the case of the longest
waves the system (2) is a good approximation of
the system (1).

2. Let us consider a more general model that
describes the behavior of ultralong waves, i.e.,
we discard the assumption mc=1. Let us first
examine the case of a nonviscous adiabatic atmos-
phere. Eliminating the velccity from the system
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w0 Tsec-1 w1, sec- 1 Let us linearize the system (17) with respect
" to the stationary solution (20)
121
ik @ 15 om’ _ BRT, dm’ BRm 81" —0
! 12 9 f Gz f* Gz
0 a1’ T + ,
;L 2 p _ I [(1+1)U.,+ (A+Y)RT, om, prT.]am 3
’ at my fo"lo 6y foz oz
246810121416 10 12 14 16 18 4
N\ R -t _[ (1+Y)RT, om, + YBRT, ] aT -0, (21)
s ~10F fome Oy f* 1 oz
i . -12
-9 —15 We look for the solution of (21) in the form
-2t 18 , ~ form
(m’) _ (le(y)) etk (x—ct), (22)
Fig. 1. Dispersion curves from Eq. (7): a - case \T T (y)
of €=0,1 - "barotropic mode", representing the
limiting Rossby wave, 2 - "baroclinic mode"; b - Substituting (22) into (21), we obtain
=1,1, 2 - acoustic waves, 3 - Rossby wave, L - -
) | "paroclinic n;ode". letb.To]m+5,7 =0,
(23)
[(A+Y) T Ust (botbs) Tyl m+[c+b,+b,] 7 =0
(2), we will have where
R 1+ T
dm PR Tm 0 b= ﬁz ~ 0,46 m -sec-! - deg-1 bz=%$~5,8 m -sec-1
oA ok m
% K = ’ ° YBRT o !
aT 1+ RT 0Tm (17) by = *~ 344 mesec-l¥
T L O pop (m, Tmy - PEL 22T T
at fom? fo'm Odz
The system (23) has a nontrivial solution if its
here (m, Tm)=0m/zdTm/oy—dm/dydTm/dz. determinant is equal to zero. From this condition
The system (17) has stationary solutions we find
m, To, which can be obtained by equating dm/dt and
e v eduating b Totbytb, [ (bTyHbitby) %
: | T ttnbru.]
OTomo _ o 9ma 8Tomo _ . (18) (24)
oz ox Oy

From this we find two types of stationary solu-
tions.

1) solution To(z,y)=—a =0, v,=0, (19)
mo(-"?yy)
R 8Tym,
2) solution me=my(y),Te=To(y),Us=—— : o’vo___
fome 0y
(20)

The first stationary solution has no physical
meaning, and we will ignore it. With respect to
the second solution, taking into account that
m,=1+0(10"?), the formula for U, can be written
thus: U,=—(R/f,)8TJ/dy. This last relation is
nothing more than the thermal wind equation,
integrated with respect to height. It follows
from this, by the way, that in this model it is
impossible to eliminate the quantity U, by chang-
ing to a moving reference system since U, is not
actually the velocity itself, but its shearing
between ground level and the height of the homo-
geneous atmosphere.

Let us note that the velocity value according to
(24) differs very little from its value using Eq.
(10), i.e., taking account of the variation of the
surface pressure with latitude only slightly
affects the propagation velocity of ultralong waves
in the earth's atmosphere. Since U,(y)>0, it fol-
lows from (24) that planetary motions are always
neutral. The phase velocities of the waves do not
depend on the wave number k and are approximately
equal to: ¢,~—150 m/sec, ©,~2 days, =9 m/sec,
.=31 days (for U,~10 m/sec); ¢,~—175 m/sec, T~
1.8 days, c¢:~17 m/sec, m.~15 days (for U,~20 m/sec)
(t is the time for the wave to travel around the
earth). The velocity ¢. of the slow component agrees
in order to magnitude and sign with the velocity
value obtained in [L4]. If it is assumed that the
average wind velocity in the atmosphere is U,~20
m/sec, then the result T.~15 days for the tempera-
ture wave matches quite well the observational
data given in [9].

3. Let us examine the relationship between
the amplitudes of the waves, moving with velocities
¢, and €2, as a function of the form of the initial
perturbation. The solution of the system (21) can
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Fig. 2. Dependence of the ratic of the modulus of
the amplitude of the fast wave component to the
modulus of the amplitude of the slow wave compon-
ent on the value of the angle a between m'(z, y, 0)
and '(z, ¥, 0: a - for |mil/Im:l, b - for |T:l/1Fa) .

be written as follows:

mf=,;‘l‘eiu(z—e‘c) et
(25)

T/=Pete-ati TeMe—et),

We take the initial conditions in the form

m’(z,y,0)=A,(y)e™, T'(z,y,0)=Bo(y)e'™>. (26)

Substituting (25) into (26) and (21), we obtain a
system of four linear algebraic equations with
four unknowns, through the solution of which we
can obtain the following expressions for the
ratios of the moduli of the amplitudes of waves 1
and 2:

jm,l (g.Bs cos a+ (b, Totcs) Ay) 2 +b 2B, sin* a 'I '

Jmal (b,By cos & + (b, Totc,) o) + b,2B,*sin’

[P, [ (FeAst (bytbstcs) B cos @)+ (b, +bstc,) By’ sin’ @ ]'/'
[T, L (Fedo+(by+bste,) B, cos @)+ (bytbytc,) Byt sin’

(27)
where Fo==(b:+bst+(1+Y) Us) T
The (dependence of the ratios Imxll_lmzl and
[T./|T:] on o for the values A= 0,02, B=5K,
U,=20 m/sec is shown in Fig. 2.
k. let us introduce heat sources into the
problem. The system of equations is written
dm PR 0T =0
ot fem oz (28)
+Y)RT T aTm
AT _GADRT oy BRAT 3Tm _ A7+0.
at fom f'm Oz

The function @ consists of two parts: Q=0Q,+Q,,
and |Q:}/|Q.}<1; Q, is determined from Newton's for-

mula:

Q:=H(TI"-T), (29)

r
L2 !
11+ 2

10
09 /
085 ! 1

i A ) ]
J006 1000 0 ~1000 —3000 y,km

~<— Pole Equator —»

Fig. 3. The empirical function q(y).

/

where T'=T(y)q(y) is the temperature in the radia-
tion equilibrium state; T(¥) is the average temper-
ature; H=8.3-10-" sec-1; ¢(y) is an empirical function ¥
(see [10]). The graph of ¢(¥), provided in the
cited paper, is reproduced here (Fig. 3, curve 1).
Considering the midlatitude region, to simplify
the calculations we approximate gq(y) by a linear
function (Fig. 3, curve 2)

q(y)=1-ry (30)

(the origin of the coordinate system is chosen in
the midlatitudes, r=3-40"*m"!). @, describes the
heat sources and sinks due to the temperature
difference of the sea and land. We assume (taking
account of the arrangement of the continents and
oceans) that

Q,=S(T"~T), (31)

where T*=T(y)y.\2, ¥), ¢:(z,y)=1Fe(y) sink(z—q), &
=2nn/L, n=0, 1,2,...,L is the length of a circle of
latitude; S§~10-" sec=l; €~0.0k.

Let us find the solution of the system (28),
looking for it in the form

T=T(y)+T'(z,y), m=1tm'(z, ), (32)

and |T'|/|T| <1, m’<€1. Restricting the discussion
toquantities of first-order of smallness, we obtain
the following system:

pom o
0z oz

_ (4+yRT oT om’
fo oy dzx

=prAT — (H+S) T'+STe sin k (z—g) =0,

p,-g;‘--l—'HT(q(y)—1)=0. (33)

on s | 55| /| 5] >
We make the assumption that o 0_y’| .

In this case the first term on the right side of
the second equation of the system (33) reduces to
Wwr(8*T'/62*). Now, eliminating dm’/dx from the sec-
ond equation of the system (33) with the aid of
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Uy, m/sec
20

10

| N N | I}
/ 2000 1060 0 ~1007 ~200 » km
~—Pole 4J°N  Equator —

Fig. 4. Dependence of the average zonal wind
velocity U, on Yy.

the first equation, we obtain an ordinary differ-
ential equation for 7’ with coefficients that
depend on y as on a parameter. The function T(y)
is determined from the third equation. The third
equation of the system (33) for ¢(y) taken in the
form of (3) is the Airy equation

L (34)

Hr

For convenience we introduce the new coordinate
yoz(Kr/uT)éy. Then (34) becomes

T (y')+y'T (y°) =0. (35)
Its solution will be
T=a,wx+azwz- (36)

Here w, and w, are linearly independent solutions
of the Airy equation, corresponding to the initial
conditions

w, (0) =1, w,"(0) =0,

w,(0) =0, w,’(0)=1.

By specifying the initial conditions for T we find
the constants a4, and a.. For winter they are
equal to 259 and 31, respectively. In the inter-
val —1i<py’<1(—5:-10° km <y <5-10°km ) the solution
(36) can be approximated by the first terms of the
expansion of the functions w, and w, in powers of

y W) [i+ 1 Hr - 1 (,Hr)’ ’]
=q — — —_
Y 1 5 y 180 \ pr y

() ()

Hence, the average zonal wind velocity U, is

R 0T (_H_r)'/'R+R (Hr)"'%’__

Up=— e —= —t—
! fo 9y ¢ Wr fo fo o Wr
a, Hr s @ Hr\* .,
Y 30(;")”]' (38)

The dependence of U, on y is shown in Fig. 4 and
it agrees, at least qualitatively, with the wind
behavior in the midlatitudes.

Substituting, now, the found function T(¥)into
the equation for the temperature perturbations, we
obtain its solution

T'=B, sin k(z—¢,),

(39)
where
STe(y)
k*(1+y)*R* ¢ T \? H4S8S\*q% ’
— ) +{K+
p'T[ [T A (6y) (1 Pr )]
(ko)
urk*+H+S 1
=ko— + _—m. i
ko, =ke— arctg k(TR E 5 (b1)
f dy

The phase shift between k@ and k¢ is equal to
60°, which agrees with the result of [11],
obtained by another method.

Finally, we find from the first equation of
the system (33)

m'=——:—°sink($—¢l)- (i)

It is seen that the temperature wave and the sur-
face pressure wave are in opposite phase, and the
relationship between their amplitudes is

TA,=B,

(A, is the amplitude of the surface pressure wave,

B, is the amplitude of the temperature wave).
5. BSince the distribution of heat sources and

sinks varies during the year, the stationary solu-
tion of the system (28) in the form (39), (L2),
corresponding to the distribution ¢i, will no
longer satisfy the system (33) for some new dis-
tribution ¢\". This raises the question of how the
meteorological fields, accommodating to the new
distribution of heat sources and sinks, evolve?

We assume that the function Q: at time =0
suddenly changes by a small amount. Let us assume,
for example,

q./(z, y)=(e+0e)sin k(z—g—dbp) +1. (43)

Solving the linearized system (28), we find for
the new distribution of heat sources and sinks

T'=Booem"'°)+f “e-alleik(x—e‘l—o—ﬂq)_*_fl oze_a,ten(x-g,a_,_w)’ ( Ly )
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m=— B_“ eu(x—o.)+;h“e—clfeil(=—=|‘—0-ﬁv)+;‘n°,e—¢:feil(=—cxt—v—ﬂv)’
(L5)
where
B ST (e+0¢e)
o= arn T (46)
k*(4+y)2R* § 9T \* 1" \
k+H+8)+ (—) ]
[ (pr ) X ay

prk*+H+S _1—
kge=k (¢+6¢)— arctg kATDR aT‘ tom (47)

fo oy
- g 2
O am— b, T+ b, + (b,T+b,) +
’ 2 2
H+8\* ¥
prk o+ —— ) !
(1+Y) b, TU, — 7 ) (18)

(b,T—b;) (urk*+HAS)
(5, T+bs)*
4 —_—

.1
014~ - (e HHHS) (9
+(1+7)TU.b,]

Substituting the numerical values of the param-
eters into (49), we find that the characteristic
damping time for the fast wave is ¢,7'~30 days and
for the slow wave 0;'~12 days (for U.~20 m/sec).
?he pumerical values of the coefficients Posy
T2, Moy, My are found from the initial conditioms.
Finally, considering the stationary solution (39),

that the ratio of the modulus of the amplitude of
the fast component to the modulus of the slow com—
ponent at the initial instant of time is no
greater than 10! (within an accuracy of 10-%).
Thus, primarily slow waves will travel in the
atmosphere for a change in the distribution of
heat sources and sinks by some amount. The ini-
tial amplitude of these waves is proportional to
the magnitude of this sudden change. In the limit
as t—o the temperature and surface pressure dis-
tribution approaches a steady-state condition that
corresponds to the heat source and sink distribu=-
tion ¢/. It can be concluded from this that the
accommodation of the atmosphere to long-period
climatic changes of the external conditions occurs
by means of the slow-wave component. Moreover,
taking into account that the atmosphere at each
given instant of time is close to the state
defined by the stationary solution of the problem,
we arrive at the conclusion that for perturbations
whose characteristic horizontal dimension is com-
parable to the earth's radius the primary type of
wave motions will be the slow wave with velocities
of the order of U, toward the east.

In conclusion the author wishes to thank M. V.
Kurganskiy for formulating the problem and his
interest in the work.
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(42) (corresponding to ¢1) as the initial condi- of the USSR

tions for the system (28) with a new distribution Institute of Atmospheric Received
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