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Laboratory and Theoretical Study of Stationary Rossby
Waves Above Isolated Barriers in an Annulus
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Laboratory study is carried out on stationary Rossby waves due to fluid
flow around isolated barriers in a rotating annulus with a sloping bottom (to

produce the beta-effect).

The interaction between Rossby waves caused by two

identical barriers placed at a certain distance from each other along the flow

is studied as a function of the distance between them.

The laboratory experi-

ments are in satisfactory agreement with the results of a simple linear reson-

ance theory.

The influence of mountains on atmospheric
motions of various scales is a pressing problem
for dynamic meteorology, and an extensive liter-
ature has been devoted to this problem, includ-
ing the exhaustive reviews [1, 2]. In previous
research along with theoretical and numerical
modeling and direct full-scale observations,
hydrodynamic experiments in the laboratory play
an important role.

Two basic kinds of experiments are clearly
evident in all of the actual experiments that
have been done. First, there are experiments in
which a barrier is towed in a rotating channel
[31. In the second type of experiments a fluid
flow is generated by some method against a sta-
tionary (relative to the walls of the container)
barrier by blowing air above the fluid surface
[4] or by rotating the annulus part of the chan-
nel bottom [5], or by a sudden change in the
angular rotation rate for the channel [6].
ever, the flow picture formed in this way is
either not completely stationary [3, 6] or the
oncoming flow has large vertical and horizontal
velocity shear [4, 5].

This paper investigates laboratory work on
stationary Rossby waves caused by fluid flow
around isolated barriers in a rotating annulus
with a sloping bottom. The method of mass
sources and sinks realized in [7 -9] is used to
produce the oncoming flow. In this case the on-
coming flow is completely stationary and has a
slight variation with the vertical coordinate.
This has made it possible to investigate the
interaction between Rossby waves formed by two
identical barriers in the channel (depending on
the distance between them), which had not been
done previously, and has resulted in a satisfac-
tory theoretical interpretation of the results
using a simple linear resonance theory.

How-

DESCRIPTION OF THE EXPERIMENTS AND RESULTS

The experimental arrangement is a rotating
platform on which is placed an annulus with
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outer wall radius b = 14.8 cm and width D = b ~q =
9.8 cm (where a is the radius of the inner wall

of the channel). The angular velocity of rotation
for the platform 2 can vary smoothly in the range
from 1.5 to 7 sec-l. 1In order to model the beta-
effect the channel bottom has a conical shape,

and the tangent of the inclination of the bottc .
Y is 0.43. For large channel rotation rates t
parabolicity of the free fluid surface is taken
into account by replacing tg vy = 0.43 by the
effective value tgy'=tgy+ (2¢)-'Q*(b+a) (see [10]).
The smallest fluid depth in the channel Hmin was

3.5 cm and was the same for all the experiments.
The mass sources were uniformly distributed along
the outer wall of the channel, and the sources
were distributed along the inner wall. According
to the measurements, the azimuthal flow rate

X
Hminl

Fig. 1. Diagram of the experiment.
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Fig. 2. Flow pictures for a single barrier

for Q = 6.0 sec-! for various fluid delivery

rates in the pump 4, g/sec: a) 38, b) 85,
c) 98.

profile that resulted was linear, except for
narrow zones near the chanmel walls. The vel-
ocity increases from the outer wall to the inner
wall. A diagram of the experiment is shown in
Fig. 1.

Experiments were first carried out for a
flow around an isolated barrier in the shape of
a thin plate with vertical generatrices.* The

*The specific shape of the barrier does not
play a decisive role in producing the wave pic-
ture. Satisfactory results were obtained in
preliminary experiments where a spherical seg-
ment was used as the obstacle. Nevertheless, it
turned out to be convenient to use a vertical
wall, deflecting the flow more effectively and
occupying a smaller volume in the channel, which
is extremely important for two barriers.

Fig. 3. TFlow past two barriers for a = 79°.

angular rotation for the channel and the mean
speed for the oncoming flow U (measured in the
middle of the channel at a distance r = (a +b)/

2 = 9.9 cm from the center) were varied respec-—
tively in the ranges 1.5 -6.75 cm/sec and 1.0 -
11.3 cm/sec. If the speed of the oncoming flow
corresponds to the phase velocity of a normal
Rossby mode, then a stationary wave chain is
formed with the corresponding symmetry index m
(the number of waves fitting in along the channel).
We note here that the idea of resonance excita-
tion of Rossby waves by mass point sources and
sinks moving with the appropriate speed relative
to the fluid was realized in [10, 11].

Our experiments showed the following general
rules.

When the channel rotates at a constant angu-
lar rate § an increase in the mean speed of the
oncoming flow U leads to a decrease in m. For
example, when @ = 6.0 sec—l an increase in U by
a factor of 2.2 because of a change in the deliv-
ery of fluid in the pump leads to a decrease in
m from 5 to 3 (Fig. 2).

For a constant pump delivery rate an in-
crease in ! leads to an increase in m. For exam-
ple, for a fluid delivery rate of 20 g/sec, which
corresponds to Ux~2 cm/sec, the values Q = 2.06,
3.7 and 5.25 correspond respectively tom = 3, 4,
and 5.

The main series of experiments dealt with
the study of the flow process around two identi-
cal thin plates located a certain distance apart.
Experiments were done for ¢ = 3.93 em~1 and U =
1.5 -8.5 cm/sec. The distance between the plates
is characterized by the angle o between them
(Fig. 1); the angle a was varied in the range
from 22°40' to 238° in steps of 11°20'. A wave
(eddy) chain was formed when the flow moved past
the two plates. Since the study was carried out
with a fixed value for 9, the number of eddies
was entirely a function of two parameters: the
angle between the plates o and the mean velocity
of the oncoming flow U, which in this case is
determined exclusively by the fluid delivery
rate in the pump. The experiments indicated the
following.
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Fig. 4. Pictures for flow past two barriers: a) for a=

182°, @ = 20 g/sec; b) for a=182°, @ = 77 g/sec; c) theor-

etically computed streamlines for o = 180°, w = 0.269 sec-1,
x = 0.37 sec2, and A = 0.115 sec-l.

For small oncoming flow velocities at U =
1.8 cm/sec and angles o, close to 72°, a regular
five-eddy structure is observed (Fig. 3).

For o =~ 180° a clear four-eddy structure is
observed right up to the largest values for U8
cm/sec. For large U the eddies that are located
in the middle between the barriers are much
stronger than the eddies found directly at the
plates (Fig. 4). )

In certain cases, when there is an increase
in U an eddy which is initially on the "windward"
side o7 a plate changes to the "leeward" side,
but the overall structure does not change.

When U is constant, for certain values
uo(m) small changes in o (Aa<11°20") in the

neighbcrhood of e, lead to an eddy jumping from
one side of a plate to the other (Fig. 5j, k).

MATHEMATICAL MODEL

We consider an annulus with a sloping bot-
tom rotating around a vertical axis. A cylindri-
cal coordinate system is chosen, where r is the
radius, ¢ is the azimuth and z is the altitude.
In the quasi-geostrophic approximation the equa-
tion for the evolution of the potential vortex
has the form (see [10] for more detail)

9 - o
= (V“\» - w)+w,\72w1+ﬂ -

¢

(1)

vy — 214 F
0

H,

Here v=gh/2|Q| is the geostrophic stream func-
tion, 2 is the angular rotation rate for the ves-
sel, g is the acceleration due to gravity,
h(r,p,t) are small deviations in the height of the
free fluid surface from static equilibrium, B =
(2Q/Hr)dH/dr, H(r) is the height of a column of
fluid under static equilibrium, HO is its mean

value, LO = ygH,/2|Q| is a length scale analogous

to the Obukhov scale in the atmosphere, A =
2C|Q|6/H, is the coefficient for Ekman friction

along the channel bottom, §=Vv/2|Q| is the thick-
ness of the Ekman boundary layer, C is a dimen-
sionless parameter on the order of unity, v is
the molecular kinematic viscosity, I(r) describes
the distribution and intensity of the external
mass sources and sinks, and the F(r,¢) are the
external vorticity sources. The square brackets
denote the Jacobian
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For the boundary conditions we assume the
periodicity of the solution with respect to ¢,
the conservation of the velocity circulation at
the channel side walls and their impermeability:

Y(r, o+ 20, t)=y(r, 9, 1),

an
2
Sa—'brdcpl,ﬂb—const 1o =0. @)
ar r O r—a,b
We set
I(ry=1,aé_(r—-b)—1,b8, (r—a) 3

(here §_ and 6+ are the asymmetric left and right

Dirac delta-functions); in this case

b
S Irdr=0,

i.e., the fluid mass in the channel is conserved.

The value for I0 is related to the flow rate §

for the pump by the equation

IO=2—_Q-_1
npfab

where Pe is the fluid demnsity.

We parameterize the effect of the plates on
the incident flow, placing finite vorticity
sources at their ends:

F=uxrb(9)6(r—r,) + urd (o—a) 8 (r—rs), %)

where § is the symmetric Dirac delta-function.
In order to convert to the case for a single bar-
rier, in this formula we should set o = 0 and use
%/2 instead of %. There is no doubt that it is
difficult to obtain explicit expressions for %
using the solution of the hydrodynamics equa-
tions. It is not out of the question that parame-
terization of the barriers in the form of a set
of é-functions or some more complex eddy source
is more correct. But for our purposes it is
sufficient that the parameterization (4) allows
the main experimental results to be explained
theoretically.

We represent the stream function field as
the sum =W (r,?)+¥ (7, ¢, {) and we have for ¥
and y' the equations (the tilde denotes averaging
with respect to ¢):

LT Ly} L (K)o

ot\r or or 13 or \ 99
(3)
A0 9Y 2Q
=22, = ILF
r or or H +EO,
a 1, oY aviy
9 [y — L 9%
at( ¥ L:'l’) o (6)

1
r
(_L_a_,ﬂ)ﬂ+ﬁ%=—xv=\p +F (r,q)

?=—;-r6(r—r.,), F'=F—F,

Taking into account (2) and (4) the law for the
conservation of angular momentum has the form
(see Appendix I for more detail)

s 2 b
2 2dr —— Y .
o 5( )rdr 3\.5 5 ridr + -

a

+——-!——(b”—-a’)—li

Hy, ° 2 2
We assume for simplicity that the mean flow is
solid body rotation with angular velocity* w.
The ratio w/Q is the analog of the Rossby-Blino-
vaya circulation index for the atmosphere. Under
experimental conditions both the rotation of the
annular vessel as a whole and also the relative
rotation of the fluid within it are clockwise,
i.e., the angular velocities Q and w are negative.
Throughout the text we have given the absolute
values for these quantities, and of course the
signs have been included in the equations. From
Eq. (7) under stationary conditions we have

4QJab %
C@+u)@viaph

(a4 b)* H,y

== .
81C (b8 —at) (2v| Q)%

(8

The laboratory experiments make it possible to
check this relationship and to determine the val-
ues for ¢ and x.

Setting ¥=wr’/2+4const, in (6), we arrive at
the equation

LAL O AN i ST T SV
,(Vw L:’¢)+0 T TBS =AY P

In the experiments the fluid depth H varies
linearly according to the law H = Hmin-+tg y(zr -a).

We replace the variable B by its mean value,
assuming B=(2Q/H,r,)tgy, where Ho = H(ro).

ther, we use the dimensionless radial coordinate
= r/b. Equation (9) becomes

(o) ( o+ 355)-

Z: ?f +ﬁb’w =b°F' (p, ).

Fur-

(10)

We look for a solution of the problem (2) and
(10) as a series

*Replacing the zonal flow velocity profile
realized in the experiment is more convenient for
calculations of the profile in the form of solid-
body rotation, and has a slight influence on the
spectrum of normal Rossby modes (see Appendix
11).




LABORATORY AND THEORETICAL STUDY OF STATIONARY ROSSBY WAVES 509

Fig. 5. Transformation of the flow picture past two barri-
ers when a is changed from 113°20' to 238° in steps of

11°20°'.
\p’zz [Amn () $in M@ F By (1) c0s M) Zi (W), (11) where Gnk is the Kronecker symbol, and
m,n
2
where the Yo, aTe the zeroes of the equation 1 Zm (Umap) P = 2 I e = s (hun) .
(m, n=1, 2 ) T I W)
N s ees
Tn(w) Ym(nu)-fm(ﬂua Yo (1) =0, n—a/b<1 In these equations Jm and Ym are m-th order Bes-

sel and Weber functions. Distributing the eddy
sources in (10) along the same system of eigen-
functions, we have (p0 = rO/b):

and the functions

Zon(hmn0) =Y r (pmn) L (fon0) —Tom (M) Yor ()
dA
form a complete system of functions that are (B -+ DY/LY)

orthogonal on the segment [n, 1]: xlf’
=4 Zm (Bumno) P2 SMMa| Zm (map) 2,

dB
(inn -+ BP/LY) -

mn
t

— mop2, Brn 4 BO*MBps + Mi2, Apn =

1
§ Zm () Zos ()l == | Zon PO,
n

mi

1

- + mmufmAm,, — Bo*mAn, + }\P:,ﬂan =
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In the stationary case the solution (11) has the
form

Y (p, )= 2 Cun sin (MP —emn) Zm (P'mnp):

m,n

where the amplitude Cp.=(Am:+ Bi.)* and phase

shift relative to the origin em.=—arctg (Bmn/Ams)
are given by the equations

2 ( 2 e
2002 | Z, (Bnfo) | Py | cos 2
C"m = 1 ?
T 0 Z o () [ (A2 m2 (0 — 0,21
A (1 -+ cos ma) —msinma (@ — @,,,)
Emn = — arctg ]

{ Asinma + (1 4 cos ma) (@ —@,,)m

Here wmn=Bb?/ pm. is the phase velocity for the
normal Rossby mode taken with opposite sign cor-
responding to the given set of indices (m, n).
The resonance excitation for any normal mode (m,
n) can be obtained by changing both the magnitude
for w and also selecting the value for the angle
a. The resonance (Cmn maximum) is obtained by

simultaneously satisfying the conditions

O=Wmn, (12)
moa=2ns, s=0, &1, +2,.... (13)

But if
mo=(2s+1)n, s=0, =1, +2,..., (14)

then outside of the variation as a function of
the values for w the given normal mode is not
excited. For comparison with experiment we limit
ourselves to nonzero values for s such that

|a] <2a.

COMPARISON WITH EXPERIMENT

The results of the previous section make it
possible to give a rather clear interpretation of
the laboratory observations of the flow around
isolated barriers. Waves of maximum extent at
right angles to the channel were observed in
the experiments, so that » = 1 in all the equa-
tions.

We turn first to experiments with a single
barrier. Assuming that the resonance condition
(12) is satisfied and taking (8) into account,
we compare the proportion

Pra )/ 2 p=s/2m) 1s)
B Q (mg) P—S/Q (my)

where P=4[,ab/C(a*+b*)y2v, and S=x(a+b)*H,/

16xC (b*—~a*)¥2v, the left side of the proportion
being determined theoretically and the right side

7”8 ¢
28F | et
/ - +
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lask 87
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Fig. 6. The dimensionless parameter C

(continuous line) and point vorticity

source » (broken line) as a function of

the angular rotation rate for the fluid

w when the channel rotates with angular
speed © = 3.93 sec-l,

being determined experimentally. The values for
the dimensionless parameter C and the constant x
are determined from experiment using Eq. (8) by
comparing the intensity of the oncoming flow in
experiments without a barrier and in experiments
with a single barrier. The values computed in
this way for C and x as a function of the angular
velocity of the oncoming flow w (for © = 3.93
sec~l) are given in Fig. 6. These values for C
and % are used in Eq. (15) and the calculations
are given in Table 1.

Table 2 contains the values for the phase
velocity of the Rossby waves CI. for different

wave numbers m and for » = 1 for O = 3.93 sec‘l,
a=5cm, b = 14.8 cm, HO = 5,61 cm, tg y' = 0.55

and p=(2Q/H,r,)tgyY=0.078 sec~lem~2. The values
for L have been taken from [12]. 1In [10] a

straight channel with an inclined bottom rotating
around a vertical axis was used as a simplified
theoretical model for the annular vessel. The
problems concerning motion in the annular and
straight channels are comparable if for the lat-
ter restriction is made to the solutions of (1)
satisfying the periodicity condition along the
length of the channel with period L=2nr,. The
computed results for the normal Rossby mode vel-
ocities Um =p"/(n*D*+m’r,?) for a straight

channel 7 = 62.8 cm long and D = 9.8 cm wide for
B'=(2Q/H,)tg y'=0.77 cm~lsec-1 are given in Table 2,
which alseo includes for comparison the linear vel-
ocities for the normal Rossby modes QWZ in the
annular channel calculated for r = ro- The fig-
ures show good agreement.

Table 3 gives values for o calculated for
different m using Eq. (13) (first column) and
Eq. (14) (second column). In our view Table 3
more completely explains the main results of the
experiment, particularly the fact that for a=
180° a stable four-wave pattern is observed up
to the largest values for ., when favorable
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Table 1

my=3, m=2

my=35 Mmyg=23

my =26, m=35

1,37
1,26

1,79
1,56

1,28
1,20

Remark. The second column of the table gives values for the
left side of the proportion (15) and the third column gives the
corresponding values for the right side. The flow rate in the

pump for all the experiments was 38 g/sec, and for m =

2, 3, 5

and 6 the angular velocity Q is 2.06, 3.20, 5.63 and 6.57 sec T,

Table 2
m 2 3 4 5 6 7
T 5,63 6,58 7,66 8,80 9,95 11,09
@y, sec™T 0,576 0,422 0,318 0,236 0,185 0,149
U, cm/sec™} 570 4,17 3,08 2,34 1,83 1,47
U,» cm/sec”l 5,77 4,25 3,11 2.3 1,76 1,37
Uy cm/sec™l| 5,49 4,02 2,96 2,25 1,76 1,41
AU, cm/sec™| 1,19 0,79 0,60 0,46 0,38 0,32
Table 3
n
2 ‘ 3 ! 4 5
~+180° 4420° 490°, +-180° +72°, H144°
+90° 4-60°, +180° F45°, +135° +4-36°, 41087, +-180°

conditions are produced for resonance excitation

of the wave with m = 2. From Table 3 it is also

clear why a five-wave system appears when o=72°
When condition (12) is satisfied we have

tgs,,,,:—ctg%.

When 2 changes through the resonance value 2as/m
the paase shift decreases abruptly from -m/2 to
+1/2. This explains the jumping of the eddy from
the "windward" to the 'leeward" side of the

plate which is observed in the experiment. If
the condition (12) is satisfied only approximate-
ly, then the phase jump condition at 7 has the
form

m(®—0,,)

2 A (16)

Assuming that the quantity on the right side of
(16) is small, we rewrite this condition as

_ 2ns

m A

a7

A definite asymmetry should thus be observed
(relative to the change in the sign for s) for

the critical angles o

jumping.

at which there is eddy
3 the

1,2
For the wave picture with m =

experiment shows that 90°40' <oy <102°20" and

-133°20" <o, <-144°40".

For the critical angles

we take the mean values for o for these intervals:
a = 96°20' and o, = -139°. According to the

theoretical Eq. (17), (Ja|+ |@.])/2=120. And in
fact from the values for &y and ey that are given

it follows that (|o.|+|e.])/2=117°40".

Starting

from (16), the evaluation of the velocity mis-

match

U—Us=r,(0—w;) 1is straightforward. Set-

ting A = 0.14 sec-l (for v = 0.01 cm2sec~!l and

¢ = 2.

o

these

79) and using the values given above for

1 and a,, we find respectively (U —U31)1,2 =
0.33 and 0.25 cm sec—l.

It is helpful to compare
values with the half-width for the reson-

ance curves evaluated using the equation AU,,.=

V3pmaro/ 1.

Table

The corresponding values are given in

2. It is seen that in the experiment just

now discussed (for which AU, = 0.79 cm sec-l)

the conditions are very close to resondnce.
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APPENDIX I

We have the equality
2n 27t b

b
d S‘ 7 a
—_- ” —- Lz
4135( )d"w (b.,26t<
0 a 0

a
The left side can be rewritten as

fa

oy

1
v ——
2L} L2

0

\
) rdrdep.

2

‘5

b

[+ (—’2— o andp —

a
271

rdrdg + S
0

Using the boundary conditions (2) and adding the
null integral

27
} drdg (
o

&
6!0

r 6L|,
+ oLt ot

12 - rdrd(p
a 0

we obtain the right side of the equality. If we
transform the latter using Eq. (1), carrying out
the appropriate integrations by parts using Eq.

(2), we arrive at the theorem for the conserva-

tion of angular momentum:

2n b .
Irdrdg — g S—;— Frdrdg.

6 a

Hy

0 Ten 2Q
k4 ; Ll
. rdrdg 4 5‘5 2
0 a
(18)

The first term in (18) is the relative angular
momentum (to within the accuracy of a constant
factor prO’ where Pe is the fluid density); the

second term describes the change in the angular
momentum because of the redistribution of the
fluid mass in the channel.
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