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Large—-Scale Atmospheric Flows
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An eight-component barotrophic model describing large-scale atmospheric currents

above an orographically nonuniform spherical earth is constructed.

The dependence of

steady-state modes of the model on the magnitude and structure of the orographic func-

tion is studied.

For some values of the characteristics of the orographic function and

the external drive, the stream line pattern obtained for steady-state solutions repre-
senting small values of the circulation index has the form typical of split blocking.

Specialists in dynamic meteorology still are
not in agreement regarding the roles of the vari-
ous mechanisms that generate and maintain block-
ing situations. Rather numerous models of the
phenomenon have been offered, but none of them is
exhaustive. The mean reason is apparently that
the term "blocking structure' embraces large-
scale atmospheric structures of highly varied
types [1]. According to Obukhov et al. [1], three
principal types of blocking structures are now
distinguished: meridional blocking, split block-
ing, and omega blocking. The geographic position,
type of .evolution and frequency of occurrence of
blocking situations are highly dependent on the
time of year. The models proposed to explain
these situations fall into two main classes.

Some assign the main role to external factors such
as orography and nonuniform heating of the atmos-
phere from below as a result of the presence of
the continents and oceans [2-5]. Models of this
type are usually linear or quasilinear. They

have been most successful in the study of meri-
dional blocking [3]. The other class consists of
models that treat nonlinear interactions (Rossby
waves, singular geostrophic eddies) as the prin-
cipal mechanism giving rise to blocking structures
[6~8). These models are rather effective in re-
producing the flow patterns in split blocking, but
they do not explain the geographic distribution of
blocking situations.

Low-order spectral models are widely used in
the structure of blocking [9, 10]; they can be
used to investigate in pure form the roles played
by the various structures in blocking, allowing
a better understanding of the phenomenon.

The simplest model of this type is the trip-
let, which has been used by Paegle [11] and the
present author [12] to study the effect of orog-
raphy on the interaction of Rossby waves with a
zontal flow of the solid-rotation type. Despite
its crudeness, this model can be used for the
qualitative study of certain characteristics of
meridional blocking. In any investigation, even
qualitative, of split blocking, which has a more
complex meridional structure, more complex spec-
tral models must be used [4, 10]. An attempt to
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apply a rather simple low-order model to the analy-~

sis of split blocking has been made by Kidllen
[10], who used a six-component barotropic model
on a sphere in which the orography was described

by single spherical harmonic &=C,"P,"(8)sin mg,
and in which the solution sought for the stream
function contained two components modeling the

zonal flow, V= (—a(t)-P(8)+p(f)PL(8))wa and four

components representing the nonzonal flow,

¥= (A" (t)sin me+B,™ (t) cos me) P, (8) + (A7, (1) sin mo+

+ Br.; () cosm@) Pry, (6).  This is the simplest non-
trivial generalization of the triplet to the case
of interaction of Rossby waves with a zonal flow
different from solid rotation with allowance for
orography. Kallen studied steady-state solutions
of the model, their energetics and their depend-
ence on certain parameters (the value of the orog-
raphic function and the magnitude of the phase
angle between the orography function and the non-
zonal forcing function). But the model could not
reproduce the flow pattern responsible for split
blocking.

We believe that when analyzing blocks it is
more natural to use an eight~component model, de-
rived from that described above by adding two more
modes in the nonzonal component of the flow,

(Ar%s (f) sinmg + Bi, (f) cos my) Priy (0):

. 0 .
interaction of zonal component w3 with the mode wnm,

as a result of

m
n+2
of enstrophy and energy to these modes as a recu
the interaction are roughly of the same mag:

We begin with the equation for the evc.
of the quasigeostrophic potential vorticity wui..
allowance for orgraphic nonuniformities on a spher-
ical earth, based on the barotropic model of the
atmosphere:

T b A+ I+ Y= (A — A,

the modes ¥ and wz_z are generated and the flows

(1)

1l =27 cos 8 is
is the mean value of
avg

where ¢ is the stream function,
the Coriolis parameter, 7
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theCoriolisparameter,g:lavgﬁuﬁ is the orograph-
ic function, HO is the height of the uniform at-

mosphere, h is the deviation of the relief from

the mean level, & is the coefficient of relaxa-
tion resulting from Ekman friction, wo is the

forcing function, which models external sources
of vorticity, @ is the radius of the earth, and
w 1s the angular velocity of the earth,

! 03 b  da ob
(a, b)=—2—(—____) .

a*sin® \ 99 oA dr 00

We distinguish the zonal component of the

flow and deviations from zonality. Neglecting
the effect of interaction between nonzonal com-
ponents, we obtain the following system of equa-
tions (where tilde denotes zonally averaged quan-
tities and the prime the deviations from zonally
averaged values):

WF__ 10T siat AT
t  a?sind ae[ang_e(M’" av),

CL T N U ) NP e - @
T+azsine[ % o AV TE— 5 ae(Aw"H)}‘

=& (Ao — AY).

Describing the orography with a single spherical

harmonic £=C,"P,"(8)-sinmj and choosing as a fi-
nite~dimensional approximation of the system so-
lution the modes just noted, we arrive at a sys-
tem of eight ordinary differential equations which
in dimensionless form are

d d
;a; = —dsb.C + € (2y — ), PRl db.C +
35 35
F 33 95C Gz - bu) — 2 dy (20— 1) (@nbocy — a0-ob) —
da,_,
=5 4 21+ 3) Gnabe — b + 2 By — ), ot

=‘(dma +dyp— E’—_;TT—T) brz — dy,fibn — ean_,, e

— (o + dusp— (n—2§+——l)) R
% = (dla +df — 7(7121—1)> b — B (dsbn-a + dobnia) +

+ e a0 —a), %lll:_ (dla—i—dzﬁ——- Ti”il-_l) an + B (dsan-, +

C
+ deQnis) + n—(,r’:%)_ + dy3fC +- € (bre — ba),

da, 2
dT"‘" e (d7a + dﬂﬁ — m) blH'B — dgﬁbn —_—
dbyyy _ 2m
= — (d,a + dgf — m) Qnia +

+dyBa, — dy,BC — by, (3)

Here, t=t0, C=C"/o, e=¢/o, (a,b,) = (A", B,")/wa,

(@n-2, bnzs) = (Anls, Brrln—z) (n—m)(n—m— 1)/lwa*(2n — 3)

(2n—1)], (Bryer bpig) = ( Zi% BZLH) (n+m+2) (n+m+l)’.
lea*(2n+5) (2n+3)1, Boy Ay, b, - are the components
of the forcing function, and dl-dls are the in-

teraction coefficients, which are presented in
explict form in Appendix 1.

In the adiabatic approximation, system (3)
has two integrals of motion

12
E[ai—}-bi + lSm[l-—m] (arzu+2+br21+2)
dtl. 2 2d, 2
12
l —-—
€ Sm[l n(n—l—l)] (ai—2+b2—2) + 4ot
2d;q 2 3n(n+-1)NT
2482
4B ]:0, (4)
Tn(n41) NI .
d 1 12
d %+ 52 [ - n(n—f—l)] (an,, + by
dr 2 } 12 2
o ]
(n+2)(n+43)
12
i [1— 12 :I 2 nn-1)
(n—2)(n—1)

=0 (N',.” = Sn(PZ’)2 sin Gde\)

0

8o (o —2) + 288B°
3n? (n+ 12N n?(n 4 12N

(5)
one of which expresses the law of conservation of
energy and the other the law of conservation of
enstrophy.

In the general case of quasilinear system (2)
there exists only one integral of motion, con-
sisting of a combination of the integrals express—
ing the laws of conservation of energy and enstro-
phy [12].

Although the system under consideration is
also quasilinear, by virtue of the special choice
of reference functions (we consider only spherical
functions with a single azimuthal index m), it is
a special, degenerate case of the Galerkin appro-
ximation of the nonlinear equation of potential
vorticity and thus is a system of the hydrodynamic
type, with two quadratic integrals of motion, in-
cluding a positive-definite quadratic integral,
that of the energy.*

*When constructing the low-order model we
began from approximate system (2) rather than from
Egs. (1) because in the general case of a descrip-
tion of orography in terms of spherical functions
with different azimuthal index m, the structure of
the system of equations in the low-order model re-
mains quasilinear, so that the regular procedure
can be used to find its steady-state solutions.
Direct application of the Galerkin method to Eq.
(1) would give rise to nonlinear terms consisting
of products of components with different m in the
equations describing the evolution of the nonzonal
component of the flow. This would greatly com-
plicate the procedure for finding steady-state so-
lutions of the model.
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It is evident from Eq. (5) that the larger
the wave number 7, i.e., the smaller the char-
acteristic size of the topographic nonuniformi-
ties, the greater their role would be in the ex-
change of angular momentum between the atmosphere
and the earth via interaction of Rossby waves
with orography. Equation (5) also indicates that
as the difference n - m decreases, i.e., as the
meridional scale of the orographic function in-
creases, the exchange of angular momentum becomes
more efficient.

Blocking is by definition a statiomary or
quasistationary process. Thus, studying the
stationary solutions of the model bears directly
on the theory of blocking. We seek steady-state
solutions of Eq. (3) by the graphic method. Set-
ting the right sides of Egs. (3) equal to zerc,
we note that the last six equations are linear in
the nonzonal components. Solving this linear sys-

tem of equations, we find @n_z, Da—s, Qn, by, Guig, bnye

as functions of o and 8. Then, treating o as an
independent variable and using a numerical method
to find for each value of a the corresponding
value of B from the second equation of system (3),

we construct the function f(a)=a-+d,Cb,(a, B(a))/e.

The intersection of the plot of this function with
the line f = ao gives the value of o representing

steady-state solutions of the model. These values
of o are then used to find the values of the re-
maining components of the steady-state solutions.

Figure 1 shows a plot of f(a) for four dif-
ferent orographic functions, described respective~-
ly by spherical modes C.P/sin3¢, Cs*Ps®sin2g,

CSPssin 3¢, C;’P,*sin2¢. For each of the modes we
present curves for three values of the Ekman re-
laxation coefficient ¢, i.e., 0.01, 0.02 and 0.06,
representing relaxation times T, of 16, 8 and 2.7

days, and three values of the mean height of the
mountains (in units of HO),

(S g (CR Py sin mq))2 do\)% Co 1/;1? )

Ve

h= — =
lavg V 4na? 2avg

i.e., 0.05, 0.1, and 0.15. It will be seen from
the figure that the smaller the value of n - m
(i.e., the coarser the meridional structure of

the orographic nonuniformities), the greater the
change in f(a) as 2 and ¢ are varied. The func-
tion f(a) has between 2 and 4 maxima for the

modes under consideration. When one of the param-
eters ¢, A and ao changes while the others are

held constant, successive bifurcations occur in
which the number of steady-state solutions of Eq.
(3) changes. For example, for the mode 563 at

€ = 0.02 and h = 0.01, as ¢y is varied from 0.08

to 0.18 the system has successively 1, 3, 5, 7,
5, 3 and 1 steady-state solutions (at the points
ay = 0.09, 0.125, 0.147, 0.157, 0.16, and 0.165,

where the system has multiple roots, there exist
2, 4, 6, 4 and 2 different steady-state solutions).
Even regimes withthe same number of steady-state
solutions are qualitatively different. We call
attention to the relationships between the param-
eters under which the first bifurcation occurs.
We will expect that as ¢ increases, the value of
h at which the first transition occurs will in-
crease. The minimum value of %ot representing

. . . 3 2
the first bifurcation for modes 56 and 57 rises

monotonically with increasing €, whereas for modes
3
%
0.01-0.06. It will be seen from the plots that
owing to the nonlinearity of the system, variation
in % and € causes changes not only in the values
of the extrema of f(a), but also in their positions,
and leads to the appearance of new extrema and the
disappearance of old ones.

Investigation of steady-state solutions of the
model leads to the question of their stability.

If the point representing a steady-state solution
on the plot of f(a) lies within the zone where
3f(a)/3a < 0, it can be demonstrated that the
solution is unstable. This is proved in Appendix
2. The condition 3f/3a < 0 is a sufficient condi-
dition for instability. Our analysis does not al-
low of any assertions regarding steady-state solu-
tions lying in the region 3f/3a > O.

To study the behavior of nonlinear system (3)
in the vicinity of steady-state solutions, the
equations of system (3) were integrated with re-
spect to time by the Runge-Kutta method. Figure
2 shows the results of integration of a system in

which &= C/’Pisin2¢, «,=0,19; B,=0, a.,,=0, b,=0,

£=0,01; h=C,2}7N_,2m/213vg =0,149. The steady-state
solutions that were studied for stability and near
which the initial values for integration of the
system were chosen are numbered 1, 2 and 3 in Fig.
1d.

2 - , -
and ES it has a minimum in the interval ¢ =

Figure 2 illustrates the temporal evolution
of the component o of system 3. Curve a describes
the behavior of mode o when perturbed solution 1
was chosen as an initial condition (Fig. ld). The
integration was performed over a period of 120
days. During this time, the components of the sys-
tem made 3 or 4 fluctuations and reached the
steady-state solution with respect to which they
were perturbed. The period of the fluctuations
was about 23 days. Both the period and the ampli-
tudes of the fluctuations of the different modes
were dependent on the magnitude and type of the
initial perturbation. If the perturbation was not
excessively large, the period changed little.
Curve b represents steady-state solution 2, which
is unstable according to our criteria. The system
components fluctuate with a period of about 12-14
days and tend asymptotically to the values repre-
senting steady-state solution 1. With a second
initial condition (with the perturbed value of «
assumed to be greater than steady-state solution
2), the system passes into a state representing
steady-state solution 3. Finally, line ¢ repre-
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sents the change in mode o of system (3) when the
initial values were slightly different from those
for steady-state solution 3; this solution, like
solution 1, is stable.

Thus, numerical integration confirms that so-
lution 2 is unstable, while solutions 1 and 3

prove to be stable. Note that a similar stability
situation of the steady-state solutions was found
by Charney et al. [3] and Kallen [10], who calcu-
culated the eigenvalues of a matrix constructed

from the coefficients of a system of linear equa-
tions dervied by linearization of a system analo-
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Fig. 2. Temporal evolution of component a

obtained by integrating system (1), using as

initial values (see Fig. 1d) slightly per-

turbed steady-state solution 1 (a), steady-

state solution 2 (b) and steady-state solu-
tion 3 (c).

gous to (3) with respect to the steady-state so-
lutions under consideration. The superresonant
solutions also prove to be unstable and the sub-
resonant solutions prove to be stable or very weak-
ly unstable.

Stream function fields were constructed from
the values of the components representing steady-
state solutions. The flow patterns for the two
cases in which the orographic function ¢ was de-

scribed by modes C.Pgsin3¢ and C;"P.;*sin2¢,are shown
in Figs. 3 and 4, which also show the field of the
orographic function for each case (Figs. 3f and
4d). It will be seen that for small values of

the circulation index o, the flow pattern has the
form typical of split blocking (Figs. 3a, b and
4a). An anticyclone is located in high latitudes
and a cyclone in low latitudes, and a solitary cy-
clone occurs northwest of the pair. The pair is
15-20° east of the extreme values of the orograph-
ic function. The flow patterns shown in Figs. 3c,
d, e and 4c represent a zonal type of atmospheric
circulation and consist of an intense meandering
zonal flow with a cyclone occurring downstream
from the extremum of the orographic function.
comparison of Figs. 3 and 4 indicates that the
latitude at which the center of the blocking pair
occurs is strongly dependent on the meridional
structure of the orographic function. Thus, to
obtain a correct latitude distribution of the
blocking pair with a low-order model, in our choice
of an orographic function we must take account of

the modes that give the most realistic meridional
structure of the relief.

In conclusion, we emphasize again that the
eight-component model used here is a simple self-
consistent barotropic model describing the inter-
action of Rossby waves with a zonal flow different

A

from solid rotation in the presence of orography.
Within the limits of our expansion procedure, it
takes account of all possible interactions between
modes, making it possible to reconstruct the tran-
sitions of energy and entropy to both smaller-
scale and larger-scale wave modes, which is parti-

cularly important when the mode generated by flow

of a zonal mode over the terrain relief becomes
barotropically unstable, thus allowing a more
realistic description of the flow pattern in

blocking structures that happen to be cases of

res

onance.

The author is grateful to M. V. Kurganskiy
for useful discussions and support.

APPENDIX 1
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To prove that the steady-state solution sat-

APPENDIX 2

isfying the condition df (@)/9& |g—q, <0 (where a,

the value representing the steady-state solution)

is

X
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Stream function fields (a-e) corresponding to steady-state solution

(shown by points in Fig. lc) and field of orographic function (e) when orography

is described by mode 563.

is unstable, it suffices to demonstrate that under
this condition system (3) is unstable to perturba-
tions of a particular type.

We consider the general case of an n-th order
system

dx
T; =fy (% ... Xq X10),
dxy
- fa (%, Xn)s
dx,
dt - ,n (xl xn)

Let functions fi and their partial derivatives
afi/axi be continuous. Setting the time deriva-

tives equal to zero and using the theorem of
existence of implicit functions, we use the last

n - 1 equations to define x seeelX as functions

2
of xl, i.e.y Xo(x1) ... xa(xy). Substituting into the

first equation, we find a steady-state solution
as a function of the parameter Ziot

Filase, xa(x1c) .. Xa(X1c), X10) =@ (X1e, X10) =0.

We now vary only z, from the steady-state value.

The equations for the perturbations become

“_w|
dt o ax, X=X r
4y (6& Oy dy O dxn) ,
dt ~ \oxy " o dr dx, dr, x,—_—xuxl'
--------- LI N I L A L L I O
dx, ( o, O dx, 0fn dxn p (6)
dt \ dx; ' oxp dx T 9k, dxy o !
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Stream function fields (a-c¢) corresponding to steady-state solutions

(shown by points in Fig. 1d) and field of orographic function (d) when orography

2
is described by mode 57 .

We seek a solution of (6) in the form (x/ ...

& ...

Xn') =

#’Jet. The characteristic equation of the

system is

o9
n-1 N A
g ( o aXl

) —o.
¥1=X 10
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