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Inclusion of Orography in the Problem of the Motion of a Barotropic
Atmosphere Over a Spherical Earth

I. A. PISNICHENKO

Institute of Atmospheric Physics, USSR Academy of Sciences

The problem of nonlinear oscillations of a barotropic atmosphere over an
orographically uneven Earth is solved in the case when the orography is repre-

sented by a single spherical harmonic.

In recent years, in connection with the in-
creased interest in the problem of blocking, a
large number of papers have been published on
the question of the interaction of the atmosphere
with the underlying surface. An extensive bibli-
ography on this subject is given in [1 -3].

References [4, 5], which have become clas—
sics, led to the discovery of a new type of insta-
bility of atmospheric flows—orographic instabil-
ity, physically linked with the nonconservation
of the angular momentum of the atmosphere over an
orographically uneven Earth. The role of orogra-
phy in the interaction of Rossby waves with the
zonal flow was investigated in [4 -6] in the R-
plane approximation. In this paper the spherici-
ty of the Earth is taken into account in the
study of the effect of orography on the motion of
a barotropic atmosphere. A similar problem, con-
cerning primarily the study of stationary states,
was also studied in [7].

1. The equation for the axial component of
the angular momentum of a unit mass of air,
neglecting friction, has the form

a__ 1w GV

dt o’
Here M=(u-+awsinB)asin®, g is the radius of the
Earth, w is the angular rotational velocity of
the Earth, 6 is the complement of the latitude
with respect to /2, X is the longitude, t is the
time, u is the zonal velocity of the wind, p is
the pressure, and p is the density. Adding (1)
to the equation of continuity and integrating
over the entire atmosphere, we obtain

H dev m%v (2)

We transform the volume integral on the right
side of (2) into a surface integral by using the
properties of integrals which are differentiable
with respect to a parameter and we write the
equation for the angular momentum in the form
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ap’}du. (3)
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where the function %#(\, 6) describes the relief of
the Earth's surface, ps is the pressure at the

surface, and S is the null surface. It is evident
from (3) that the axial component of the total
angular momentum is not conserved in the presence
of orography. The sum of the angular momenta of
the Earth and of the atmosphere is conserved.

2. We average the equations describing the
dynamics of the atmosphere over altitude with a
weight p. Assuming that the entropy of air is
constant in the entire atmosphere, while the wind
velocity is virtually independent of the vertical
coordinate z, we obtain a generalization of the
equations of the barotropic model of the atmo-
sphere [8] to the case of orography in a spheri-
cal coordinate system:
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Poo = 1000 mbar and TOO is the average air temper-

ature at the surface. The system (4) conserves
potential vorticity and energy
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3. The law of conservation of the potential
vorticity (5) in the quasigeostrophic approxima-
tion is written in the form (see [8])

L g+ 19,0 =0, g=Ap+I+E——, ™

where p=(c}/lzy) 1+ (gllav) ki, Li=cit/la¢, H=ct/g
is the scale height of the atmosphere, Zav is the

average value of the Coriolis parameter, and g is
the acceleration of gravity. In the derivation
of (7) it was assumed that the ratio of the char-
acteristic height of the relief to the scale
height of the atmosphere %/H is of the same order
of magnitude as the Kibel number Ki=0.l. In what
follows we shall neglect the term describing the
two-dimensional compressibility in (7) because of
its smallness. Separating the zonal component

of the flow and the deviation from zonality and
neglecting the effect of the interaction of the
nonzonal components on the nonzonal part of the
flow, we arrive at the following system of equa-
tions (the wavy overbar denotes zonally averaged
quantities, while the prime denotes the devia-
tion from the zonally averaged quantities):
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Multiplying the first equation in (8) by sin ©
and integrating first over 6 from zero to €
(assuming that the flux of the vortex at the pole
equals zero) and then over the entire Earth's
surface, we obtain for this model the equation
for the change in the relative angular momentum
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where o is the circulation index. -

For a zonal flow of the form ¢ =
—a(f)0a*P,"(0) +p(f) P.°(8) from the system (8) it
is possible to derive a conservation law which
extends the integral of motion found in [9] (for
the barotropic vorticity equation linearized with
respect to the indicated zonal flow) to the case
when orography is taken into account

= const.
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Multiplying the second equation of the system (8)
by ¥' and g’ in turn and integrating over the en-
tire Earth's surface we obtain equations which
describe the change in the kinetic energy of the
atmosphere and of the average squared nonzonal
component of the vorticity, combining which with
(9) we arrive at the equation
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Thus, taking into account the orography owing to
the nonconservation of the angular momentum,
leads in the law of conservation for the quasi-
linear system (8) to the appearance of additional
terms as compared with the analogous formula for
a smooth Earth [9].

Here and everywhere below the changes in w
caused by exchange of angular momenta between the
atmosphere and the solid Earth are neglected,
since the moment of inertia of the atmosphere is
vanishingly small compared with that of the Earth
(their ratio [,/[;~10*). For this reason the
solid Earth can be regarded as an infinite reser-
voir of angular momentum (Q-stat) analogously to
the manner in which the thermostat in thermodynam-
ics is viewed as an infinite reservoir of thermal
energy.

In the case when the angular velocity of the

zonal flow is constant over 8, i.e., @ = a(t)a*wP,’,
the integral (11) separates into two independent
integrals:
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The first integral expresses the law of conserva-
tion of energy, while the second expresses the

law of conservation of enstrophy; in addition, the
second integral of motion implies that some combin-
ation of the enstrophy of the nonzonal flow and

the relative angular momentum is conserved approx-
imately (the quantity 2/(aw)?/24* is much smaller
than the two other terms in (13)). Therefore,
reducing (q')2 to zero increases M to a maximum
value. From the relation
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Starting from this formula we can introduce the
concept of a deficit of angular momentum. This
is the maximum quantity of angular momentum which



794 I. A. PISNICHENKO

can be transferred from the solid Earth to the
atmosphere owing to the interaction of Rossby
waves with the orography.

4. The expression for the deficit of angular
momentum can also be obtained directly from the
nonlinear equation (7). The formula for the ab-
solute angular momentum in the barotropic quasi-
geostrophic model of the atmosphere is written
in the form

M=p?’°£f[ai%+amsin6]asinﬂdﬁ. (15)

Integrating this equation by parts we obtain

M=%5 g cos8a? do. (16)
S

For (7) there exists an integral conservation law
for the distribution of the vorticity

a _dE _
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(¢ is an arbitrary function). We shall calculate
the extremum ¥ under the condition F = const.

For this we find the absolute extremum of the
functional H# = M +F. The conditions of the ex-
tremum will be 85 = O and 82K <0 or 62K »0. The
equality

8H = jsj ( '-’;i cos 8c? + ' (q)) 8qdo =0

implies that q must depend only on 8, i.e., the
vorticity distribution must be strictly zonal.
The expression for the second variation

8H — j'j"‘” @ (5gy do—lﬁ “as;;: Ggrds  (17)

implies that M will have an extremal value, if
3q/36 is a monotonic function. 1In the case of a
zonal flow rotating with a 6-independent angular
velocity ow, 62H <0 and M assumes its maximum
value; the formula (17), taken with the opposite
sign, is identical to (l4) and is thus the most
general expression for the deficit of angular
momentum.

5. We shall now solve the system (8). De-
fining the relief of the Earth's surface by the
function

&= D\(C¥ sinmh 4 DF cos mh) P (0), (18)

we seek the solution of (8) in the form

P = —a (f) @a% cos 6 + D) (A (f) sinmh + B (#) cos md) P (6).
" (19)

Substituting (18) and (19) into (8), we obtain the
following system of equations:

m————Z(AZ‘ m —CiBTymNy,

LLI Am waamCy'

2 =~ meeAr +——n(n+l) , (20)
dAT 2amD™

id =mmen33‘_w’
dt n(n+1)
where
i
NZ‘=§[P,’[‘ (8)1% sin 68, e, = — 20+ %)
Y n(n+1)

For this system the integrals of the motion (12)
and (13) assume the form, respectively,
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An extremum of ¥ with F = const is a sufficient
condition for the stability of the stationary solu-
tion of the nonlinear system (20). To find the
conditional extremum of F we form the functional

H = E+kF (k is an undetermined Lagrange multi-
plier) and we find its absolute extremum, which
exists, if
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while the quadratic form
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has a definite sign. The stationary solution of
the system (20) satisfies the condition (23) and,
according to (24), is stable for all €, >0.

6. In the first approximation the system
(20) reduces to a dynamic system of third order
for the coefficients 4, B, and o, which can be
integrated explicitly because of the existence of
the first two integrals of motion. In dimension-
less variables the system is written in the form
(see also [10])

dzf a.m&
& me.B=yg, =+ med R
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f=te, C= C.,w, j=*[, (we omit below the caret over
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We shall study the stability of the system (25)
linearized with respect to this solution. Sub-
stituting eor +a'’, B', ACT +4' for a, B, and 4

and neglecting terms quadratic in o', B', and 4',
we obtain
5o

From here the stationary solution of the system
will be unstable for
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Equation (26) also implies that the highest rate
of growth of the wave is achieved in the limit
enst—0, i.e., when the phase velocity of the Ross-
by wave approaches zero.

With the help of the integrals of motion
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the nonlinear system (25) can be reduced to the
equation
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which can be integrated in terms of elliptic
functions [11] (the values of F and F are deter-
mined from the initial conditions). Since the
zonal flux is a positive quantity, the limits of
variation of « are determined from the condition
that the expression in the radicand in (30) is
positive. The coefficient in the highest power
of the polynomial is negative, and therefore
solutions corresponding to the cases of four real
roots or two real and two complex roots are
physically meaningful. For the case when all

four roots are real, the solution of Eq. (30) is
written in the form
o Liyy % (161 - @4, ’?) = Uy = lig MUy — ) , (31)

sn® (18! - @1, B — (Liey — L)y — 1)
where ,>1,>0,>1l, are the roots of the polynomial,
i=4, 2, l.=l,, 1=V, G-1) (=) (L—-1.), and
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For the case when two roots are real and two are
complex,
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The period of the oscillations T of the circula-
tion index o is given, respectively, by the
formula

vy

4n(n-41)
mln(n—+1) —2] )
i

do

V—la—I@—i)a—hL)e—1I)
{

_ 8t D) Fy2 V=) (s — 1)/(h — L) (i —1a)
min(e+ 1) =2} V(g — L) (ls— &)

T=

(33)
for’the solution (31) and by the formula
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for the solution (32) (F(m/2, k) is the complete
elliptic integral of the first kind).

Figure 1 shows the dependence of the period
of the oscillations of the cycle of the index o

T, days
150 ‘ ‘
L st 2 3 2
L % ’ k : pé b
100 —
: |
50 /'
- | {
19 - ;
P K I ) 1 L |
8,02 5,04 4,06 408 47 &

Fig. 1. Dependence of the period of the oscilla-

tions of the cycle of the index on the initial

value of ag for the case B~+0 and A—+Agy =alC/
Joo[n(n+1)—21—2.
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Table 1
H
@
0,03 . 0,06 ‘ 0,09 0,12
t=Cisin2hP2(0).| T, days 32,8 23,6 18.3 15,1
Ay = —0,0002, 0,02 . i
By =0 Aa 0,027—0,02 0,024—0,02 |0,0203—0,02| 0,02—0,017
T, days 38,1 24,0 13,2 15,0
0,03
Aa 0,03—0,0287| 0,03—0,021] 0,03—0,016| 0,030,011
T, days 37,7 23,9 18,2 14,9
0,04
Aa 0,04—0,023| 0,04—0,015 0,04—0,009] 0,04—0,005
T, days 38,1 24,0 18,2 14,0
0,045
Aa 0,045—0,018,0,045--0,012(0,045—0,006|0,045—0 ,001
t=Cjsin3LP: (0),] T, days 30,1 18,6 | 14,1 11,5
Ay = — 0,00002, 0,02 - |
By=0 Ac 0,025—-0,02 [0,02—0,0199] 0,02—0,016 0,02—0,012
T, days 28,1 18,0 13,7 11,3
0,03
Aa 0,03—0,019] 0,03—0,013] 0,03—0,009| 0.03—0,005
T, days 28,2 18,1 3,7 11,2
0,04
Aa 0,04—0,01 | 0,05—0,005|0,04—0,0006|0,04—~ 0,003
T, days 30,8 18,4 13,8 11,3
0,045
Aa 0,045—0,0060,045 —0,00060,045—=0,004/0,045---0,007

on the initial value of ey

when the initial values of the wave components
approach the values corresponding to the station-
ary solution: B0, A;>Ag=a.C/lacln(n+1)-2]-2].
Four variants of the function describing the

relief were studied: VY.=C?sin2\LP,% VY=

Cisin3A P, YiA=C/sin2A P, Yi=Cg#sin3APe. The
average height of the mountain

for the limiting case the cycle of the index, carried out using the

formulas (31) - (34) for a series of values of Hm,
ey AO’ Bo corresponding to the observed values.

The orography in these calculations was repre-
sented by spherical harmonics Y%, and Y,°, for
which an oscillatory regime is possible for exist-
ing zonal flows. It is evident from the table
that oscillations of o with large amplitude with
periods longer than one month are possible. We
note that similar oscillations of the cycle of

the index were obtained in the numerical model of
[12] when terms describing the orography were in-
cluded in the model. Thus, in this work, by sim-

Hy=— (35 (CIP? sin mhy? do) # [y 9na®

S

is assumed to equal 0.1, which agrees with the
data on the expansion of the orography in spher-
ical harmonics and corresponds in dimensional
units to a mountain 1.5 km high. It is evident
from Fig. 1 that oscillations of a arise only
when ao falls in the region of instability (27).

This region (at the latitude 45°) corresponds to
zonal winds 23.5m/sec<U,<33.3 m/sec for the wave

Y 16.5 m/sec<U,<254 m/sec for Y, 12.2<U,<19.4
m/sec for Y, and 9.4 m/sec<U,<15/5 m/sec for
Y. As the wave number decreases, this region
increases, and the subregion corresponding to
oscillations with the longest period becomes
narrower. For small but nonzero values of B and
A' =4 -Ast the left side of the graph of the

dependence of the period on o begins not at zero
but rather at some small quantity, while the
right side will be not the asymptote going to
infinity but rather will approach a large but
finite value.

Table 1 gives the results of calculations
of the amplitude and period of oscillations of

plifying as much as possible the equations of
motion of a barotropic atmosphere over an orograph-
ically uneven spherical Earth, the interaction of
the Rossby wave with the relief, leading to long~-
period oscillations of the angular momentum, was
separated out in a pure form.

In recent years there have appeared works
[13, 14] in which a dependence is established be-
tween variations of the Earth's angular rotational
velocity, measured with high degree of accuracy by
astronomical methods, and variations of the angu-
lar momentum of the atmosphere. This opens up the
possibility of using a quite long series of mea-
surements of the duration of the day in diagnostic
investigations of blocking. For this reason, the
study of the exchange of angular momentum between
the atmosphere and an uneven Earth may be useful
in such studies.

In conclusion, the author thanks M. V. Kur-
ganskiy for formulating the problem and for useful
discussions.

Received February 7, 1985
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