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Long-term climate variability in a simple, nonlinear 
atmospheric model 

M. V. Kurgansky, K. Dethloff, I. A. Pisnichenko, H. Gernandt, 
F.-M. Chmielewski, and W. Jansen 

Abstract. A nonlinear, baroclinic, hemispheric, low-order model of the atmosphere with 
nonzonal orographic and zonal thermal forcings has been constructed. The model is used 
to investigate the long-term climate variability by running it over 1100 years. The model 
runs show a chaotic behavior in a realistic parameter range. With and without a seasonal 
cycle in the thermal forcing, the model generates decadal climate variations which are of 
the same order as interannual variations. The maximum variability is found in a broad 
range of periods between 3 and 44 years. Empirical orthogonal function analysis reveals 
that these fluctuations are predominantly caused by the interaction between the 
orographically excited standing wave and the mean zonal flow. The computed power 
spectra of the principal component time series stress the importance of the high-frequency 
transients in long-term climate variability. 

1. Introduction 

While much has been learned in recent years about the 
factors that determine the behavior of the atmosphere, our 
understanding of its variability and long-term trends is still 
rather limited. The processes controlling climate are complex, 
and high-resolution paleorecords show pronounced variability 
on timescales of 104-106 years, as described by Birchfield and 
Ghil [1993] as well as on timescales of 10•-103 years as dis- 
cussed by Mayewski et al. [1993]. 

Whereas the variability on long timescales is connected with 
the slow, nonlinear physics of the ice sheets paced by the 
eccentric variability as pointed out by Birchfield and Ghil 
[1993] and Berger et al. [1993], the causes of the variability on 
the shorter timescales of 10ø-102 years are not yet understood. 
One of the essential problems in estimating man-made climatic 
change is to identify and understand the natural variability of 
the atmosphere on the aforementioned time scales and the 
reasons of these variabilities in terms of atmospheric physics. 

The atmospheric circulation varies on a wide spectrum of 
timescales. The shorter synoptic variations dominate the fluc- 
tuations of the weather and originate in the internal dynamics 
of the atmospheric flow, which is unstable and strongly non- 
linear. On timescales much larger than the synoptic there is a 
tendency to assume that variations are driven by external forc- 
ing, for example, solar cycle variations or coupling between the 
atmosphere and a more slowly varying component of the 
oceans. In investigations of climate sensitivity it is most impor- 
tant to determine the relative contributions of internal vari- 

ability and external forcing. Much effort has been expended to 
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study low-frequency variations on timescales of about a week 
to a month in the large-scale atmosphere [e.g., Haines, 1994]. 
This area has attracted intense research, since it spans a gap 
between short-term variations due to daily weather events and 
longer-term natural variations in the climate, whose mecha- 
nisms are mostly still the subject of speculation. 

Can short-term variations of weather elements lead to sig- 
nificant long-term variability of the climate on timescales of 
10ø-102 years? In order to answer this question we use an 
idealized atmospheric climate model, originally developed by 
Termekes [1977] but never used for a systematic investigation 
of long-term climate variability. 

The motivation for using simple, nonlinear climate models 
of the atmosphere is the expectation of understanding the 
long-term behavior of such a model more easily than that of a 
general circulation model, as was pointed out by Ghil [1988] 
and Egger [1992]. Simple models are computationally econom- 
ical. Despite their low spatial resolution they show a complex 
temporal chaotic behavior in a realistic parameter range which 
resembles the dynamics of the atmosphere with frequent tran- 
sitions between circulation states. 

Similar investigations of the long-term variability by using a 
simple climate model have been carried out by Pielke and Zeng 
[1994] with the idealized nonlinear atmospheric model devel- 
oped by Lorenz [1984, 1990]. James and James [1992] have 
discussed the problem. with a multilevel baroclinic primitive 
equation model. We have constructed a simple baroclinic, low- 
order model which takes into account an orographically forced 
planetary wave and nonlinear interaction with a zonal flow 
excited by a meridional temperature gradient between the 
equator and the pole. We will show that such a simple model 
exhibits a behavior similar to the general circulation of the 
atmosphere and that it is suitable for studying features of 
long-term atmospheric variability. An attempt is made to dis- 
cuss the importance of time variations on the scale of few 
weeks in the long atmospheric waves and the zonal flow due to 
nonlinear interactions between them. leading to significant 
long-term climate changes. 

The model formulation is based on a one-level, nondiver- 
gent model of the atmosphere with buoyant forcing which 
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imitates the baroclinic effects and with surface friction param- 
eterization developed by Termekes [1977]. Alishayev [1980, 
1981] extended this model to divergent motions and consid- 
ered the wind variations with altitude. The quasi-geostrophic 
version of this improved model is applied on a spherical Earth 
including orographic forcing, Newtonian cooling, and Ekman 
friction. 

On the basis of this model we will discuss the natural vari- 

ability of the model atmosphere due to the nonlinear internal 
dynamics using an integration over 400,000 days (1100 years). 
Experiments with and without an annual course of thermal 
forcing are compared in order to demonstrate the influence of 
seasonal changes in solar heating on the long-term variability. 

The presented model is as complex as traditional two-level 
baroc!inic models [e.g., Galin and Kirichkov, 1985]. In compar- 
ison with these it has the shortcomings of neglecting synoptic- 
scale baroclinic waves. The model and the results concerning 
stationary, periodic, and chaotic solution regimes are pre- 
sented in sections 2 and 3. The structure of long-term climate 
variability is studied in section 4, using empirical orthogonal 
function (EOF) and principal component (PC) analysis. Con- 
clusions are summarized in section 5. 

2. Model Description 
We consider a two-dimensional baroclinic atmosphere over 

the topography with height h governed by the equations of 
momentum, mass and energy conservation written here for 
simplicity in Cartesian (x, y) coordinates, similar to Alishayev 
[1980]: 

D R 0 0 

D• u = (or) - # h + fv + Fx, (1) pox 

D R 0 0 

Dt v- (or) - # h - fu + Fy, (2) p Oy •-• 

D--• p: -p •xx u + •yy v , (3) 

z) (0 0 ) z)tr--r (4) 
Here p = P/g, where P is the surface air pressure and # is the 
gravitational acceleration; ? = R/cp -- 2/7, where R is the gas 
constant of dry air and Cp is the specific heat capacity at 
constant pressure; T is the average temperature of individual 
air columns; Fx and Fy are the longitudinal (x) and latitudinal 
(y) components of mechanical forcing, including friction; I is 
the thermal forcing; f is the Coriolis parameter; u and v are the 
x and y components of velocity; and 

D 0 0 0 
---- __ 

Dt Ot + u • + v Oy 
is the operator of the total derivative with respect to time. 

These equations are obtained by averaging the three- 
dimensional hydrothermodynamical, quasi-static equations 
with respect to height, assuming that the horizontal wind field 
and potential temperature field do not significantly change in 
the vertical direction. This rough approximation disregards the 
coupling between horizontal and vertical components of mo- 
tion resulting from the thermal wind relation. So strictly speak- 
ing, equations (1)-(4) are to be considered as a correction to 
barotropic equations, taking into account small effects of hor- 

izontal inhomogeneity in the temperature field. Nevertheless, 
they give surprisingly good results, as was already mentioned 
by Tennekes [1977], who gives a physical interpretation of the 
zonal flow instability mechanism resulting in this model. The 
mean western zonal wind is maintained by thermal forcing. 
Relatively warm (and light) air masses are deviated poleward 
by the Coriolis force, and relatively cold (and heavy) air masses 
are deviated equatorward. This is the case of so-called hori- 
zontal large-scale convection in the Coriolis force field. 

Using the quasi-geostrophic approximation and eliminating 
the horizontal wind divergence, (1)-(4) become 

0 

a-• (V2½ - L-2½) + J( ½' V2½ + f + #hf•'L-2) = -L-2 • r 
0 0 

+ J(r, #hf•L -2) + •xx Fy - • Fx, (5) 
0 0 

• r + J(qt, r) = • • qt - •J(qt, ghf•-') + Rf•(1 + 7)-•I, 
(6) 

where L 2: R• 2 is the baroclinic Rossby radius, • = 7/(1 + 7) 
= 2/9, and J and V 2 denote the Jacobian and the Laplacian 
operator, respectively. Furthermore, 

½ = R•f•{(P- P)/P + (r- •)/•} + ghf• • 

is the stream function, and 

r = R(T- •)f•' 

is proportional to the deviation of the temperature T from the 
average air temperature T = 250 K of the entire atmosphere; 
fo = 10 -4 s -• is the Coriolis parameter reference value and 
P = 1012.5 hPa is the average surface air pressure. Equations 
(5)-(6) are comparable in complexiff with traditional •o-layer 
models, but more accurately describe planeta•-scale, low- 
frequency processes. 

If (5)-(6) are integrated over the entire atmosphere, the 
energy balance equation will readily be obtained: 

dE: -• + %I(T- dxdy. 
Here, 

E = 5 (V½)2 + cp•((r- •)/•)2 

p +• dx dy 

is the sum of kinetic energy and a specific form of the available 
enthalpy [see, e.g. Dutton, 1973; Pearce, 1978; Kurgans•, 1981; 
Marquet, 1991]. 

In the limit L -2 • 0, equation (5) is reduced to the non- 
divergent vorticiff equation 

O O O 

- + J(½, + f) = - Fx. (7) at 

In this way the effects of horizontal baroclinity (buoyancy), 
large-scale compressibility, and orographic impact appear in 
the same order as L -2. Equation (7) can also be derived 
directly using the three-dimensional equations of a barotropic 
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atmosphere (with the constant values of potential temperature 
over all the atmosphere) under the following two assumptions: 
(1) Earth's surface corresponds to an approximately isobaric 
level, i.e. disregarding the effect of the mean wind divergence, 
and (2) weak altitude dependence of the wind field. A more 
realistic model is the so-called equivalent-barotropic model 
[Charney, 1949], where horizontal wind can change its magni- 
tude with altitude, but not the direction: Ot 

u(x, y, p, t) = ./t (p)uo(x, y, t), 

v(x, y, p, t): A(p)vo(x, y, t), 

where A (p) is some prescribed function of pressure p. 
In this case, instead of equation (7), the result is 

Here, 

at V2½ + J(½' kV2½ + f): •xx Fy - •yy F•. 

dP/( k=P A 2 A dp 
o 

>1 

(8) 

according to Cauchy-Schwartz's inequality. If, for example A = 
(P - p)/P, then k = 4/3. In analogy to (8) we introduce the 
parameter k into (5). The direct procedure of introducing such 
a parameter into (1)-(4) and (5)-(6) would be more compli- 
cated. However, using the quasi-geostrophic scaling argu- 
ments, it can be shown that the expression obtained for k is 
valid in the general case. We have taken k - 4/3 and adopted 
the parameterizations for external factors of Newtonian cool- 
ing and Ekman friction as follows: 

a x -- ay - - r). 
Here X is the coefficient of NewtonJan cooling, r* is the refer- 
ence radiative equilibrium temperature, and •'F. is the coeffi- 
cient of Ekman friction. Using k > 1, the threshold for the 
long-wave baroclinic instability is reduced compared with the 
case k = 1. More important, it gives the shortwave instability 
cutoff. 

Considering the mentioned above parameterizations the 
equations (5)-(6) can be written in a spherical geometry and in 
a nondimensional form by using the Earth's radius a as a unit 
of length and the inverse of Earth's rotation angular velocity D 
as a unit of time: 

at (V:½- A:½) + J(½, kV:½ + 2/• + A2H) = -A:• ß 

+ A2j(,, H) + CV2(,- ½), (9) 

at r+J(½, ,) = e•½- eJ(½, H) +Q(**- (•0) 

(V2½- A2( 1 - e)O) + J(O, kV2½ q- 2/• 

+ A2H(1 - e) -- A2T) - J(T, A2H) -- CV2(T- ½) 

+ A2Q(r * - r) = 0, (•) 

+ eJ(½, kV2½ + 2/•) + eV2J(½, H) - eA:J(r, H) 

- eCV2(r- ½) - Q(V 2- A2)(, * - r) = 0. (12) 

The dependent variables are expanded into spherical harmon- 
ics: 

½(X, /•, t) = -a(t)/• + F(t)P}(I•) + A(t)P• sin mX 

+ K(t)P,• cos rnh 

r(X, /•, t): -/3(t)/• + G(t)P}(I•) + B(t)P7 cos mX 

+ L(t)P,7 sin mh 

where h is the longitude and P,T (/•) are the normalized asso- 
ciated Legendre polynomials (p•0 : X/- (3/2)/•). The zonal 
wave number (order) is m, and n (N) corresponds to the total 
wave number (degree). The values N, n - m are odd integers 
that make the model hemispheric. We are using a low-order 
model with a very sparse horizontal resolution of wave number 
m in the zonal direction. Here n - m characterizes the num- 

ber of zeroes in the stream function field from pole to pole. 
The orography and thermal forcing are as follows: 

H: • P'"[ T* * .•,• •/•) sin taX, = -/3 /•. 

Equations (11)-(12) in thcir spectral form are shown in Ap- 
pendix A. Here we note only that the spectral version of the 
model consists of eight ordinary. quadratically nonlinear dif- 
ferential equations. 

Equation (A6) includes an additional thermal forcing due to 
surface baroclinity. It is twice as large as orographic forcing, 
acts in the opposite direction, and corresponds to radiative 
cooling over topographic maxima and warming over minima, 
respectively. In all of the later runs described we adopt m = 2, 
n = 5, andN= 3. 

The seasonal course in external thermal forcing can be taken 
into account by 

/3': /3{;(1 + E sin(t/365)). (13) 

E describes the modulation of the meridional temperature 
gradient. The resulting nonautonomous system of eight equa- 
tions is transformed to the autonomous system of 9 equations 
by introducing the additional variable O (!): 

/3* = /3;(1 + E sin(O/365)) 

It applies to (d/dt)O = 1 and O = 0 for t -- 0. 

Here/• is the sine of geographic latitude. The nondimensional 
radius of deformation A-• is determined by A 2 = a2L -• (A 2 
- 5.656); the nondimensional Ekman and Newtonian damping 
coefficients are C = •'F./I• and Q - x/l•, respectively. H = 
(1/•)gha-•l•l -•, andfo = 

Equations (9)-(10) are further rewritten for a convenient 
time integration as follows: 

3. Initial Experiments 
Model equations have been integrated by means of a fourth- 

order Runge-Kutta algorithm with time steps of 1 hour. Initial 
conditions were chosen such that without nonlinear terms and 

in the absence of orography the solution would be in balance 
with the external forcing. The wave components were excited 
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Figure 1. Bifurcation diagram as function of the meridional temperature gradient between equator and 
pole, described by the thermal Rossby number Ro7, and the orographic height h (meters) for m -- 2, n = 
5, N = 3 and dissipation time of 16 days. Symbols are S, stationary solutions; R, Rossby-wave-like solutions 
with constant amplitudes; V, periodic vacillation regime; and C, chaos. 

to give a meridional heat flux for the starting time. In order to 
solve the initial problem in the conservative case, the exact 
solution of the nonlinear problem in terms of elliptic functions 
was studied fork = 1, a = /3 = const, n = N= 5, H o = 0 
and applied to test the numerical procedure (see Appendix B). 

We integrated the model equations over 1000 days and vi- 
sually separated the solution regimes into stationary (S), 
Rossby-wave-like solutions with constant amplitudes (R), pe- 
riodic vacillations (V), and chaotic regimes (C). We also spec- 
ified the influence of the damping scale, which was recognized 
to be of minor importance. The model runs were performed 
with v E = X taking a dissipation timescale of 16 days. 

As a first result we have constructed bifurcation diagrams as 
a function of the temperature gradient between equator and 
pole and the orographic height h. The temperature gradient is 
used in a nondimensional form by the so-called thermal 
Rossby number Ro 7- -- R A Tf•- • 12 - • a - 2, where A T is the 
temperature difference between the equator and the pole. 
Rot • 0.001 AT if AT is in degrees Celsius. 

The results are presented for wave numbers m -- 2, n = 5, 
and N = 3 in Figure 1. The diagram shows islands of chaotic 
behavior for realistic values of the meridional temperature 
gradient and orographic height. If the dissipation is doubled 
there is no structural change in the resulting bifurcation dia- 
gram. 

Examples of temporal behavior of the nondimensional am- 
plitude a(t) of the mean angular velocity of the atmosphere 
are shown for a constant orographic height of 2500 m and 
temperature differences between equator and pole of 20øC, 
25øC and 70øC in Figures 2, 3, and 4. They describe the Rossby 
wave regime, the vacillation regime, and the chaotic regime. 

The solutions in the chaotic regime are now investigated in 
more detail. In order to be sure that the model is really in a 
chaotic regime, we have specified the parameter values for 

meridional temperature gradients and orographic heights from 
diagrams like Figures 2, 3, 4. Using a temperature difference of 
70øC between equator and pole and an orographic height of 
2500 m we integrated the model over 400,000 days, on about 
1100 years, and called it run 1. 

In Figure 5 we show the climate of the model, computed by 
averaging the stream function field over the model integration 
time of 1100 years excluding the first 10 years. At midlatitudes, 
well-developed lows and less pronounced highs are seen. The 
highs are situated near the maximum heights of the orography. 
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Figure 2. Temporal evolution of a(t) in the Rossby regime 
(R) form = 2, n = 5, N = 3, h = 2500 m, andRo7, = 0.02 
(2ooc). 
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Figure 3. Temporal evolution of oz(t) in the vacillation re- 
gime(V) form= 2, n = 5, N= 3, h = 2500m, andRor= 
0.025 (25oc). 

In midlatitudes the general features of model climatology 
agree with the climatological mean stationary waves described 
by Wallace [1983] using observational data. 

To characterize the chaotic regime in a quantitative manner, 
we computed the Lyapunov exponents using a modification of 
the method by Shimada and Nagashima [1979]. One of the 
eight Lyapunov exponents is positive, one is zero, and six are 
negative. The value of the positive exponent corresponds to an 
e-folding time of about 7.6 days. The sum of all exponents is 
negative and corresponds to an e-folding time of about 2.5 
days. In Figure 6 the positive time dependent Lyapunov expo- 
nent is plotted against the logarithm of the time integration 
period. The plot shows how the time dependent exponent 
converges to the Lyapunov exponent of the model. The dimen- 
sion of the attractor resulting in the model has been deter- 
mined following Kaplan and Yorke [1979]. A Kaplan-Yorke 
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Figure 4. Temporal evolution of a(t) in the chaotic regime 
(C) form= 2, n - 5, N= 3, h = 2500m, andRoT= 0.07 
(70øC), for the first 1000 days of integration. 

dimension of 5.3 was found. This value may be considered as 
an indication of the Hausdorff dimension of the attractor. It 

suggests that the described chaotic behavior would have been 
simulated by a dynamical system with only 6 degrees of freedom. 

Figure 7 shows the temporal changes in the zonal index a(t) 
over the first 10,000 days of run 1. Transitions between differ- 
ent circulation states of varying duration are visible. 

Daily data series of a(t) over 400,000 days have been used 
to compute the power spectrum P= of the zonal index. The 
result is shown in Figure 8 together with the half width of the 
95% confidence interval. The standard deviation o- of the time 

mean & = 0.062 is equal to 0.0062. A strong perturbation 
ranging 30% in the initial conditions did not change the spec- 
trum in Figure 8 significantly. There are two separated fre- 
quency maxima with periods of approximately 8 days and 25 
days. The plot shows that the amplitude of the fluctuations 
steadily increases as the period increases from the seasonal 
timescale to interannual timescales. The most pronounced sig- 
nals are seen for periods of approximately 3, 6, 13-14, 23, and 
44 years. The maximum variability was found in the decadal 
timescale. The robustness of the different frequency peaks has 
been examined by using different fast Fourier transform (FFT) 
resolution 2 N in Matlab. All results described have been de- 

termined at a resolution with N - 16. Spectrum estimations 
with different N lead to small changes in the position of the 
frequency peaks. 

4. Structure of the Long-Term Climate 
Variability 

In the previous section we discussed the long-term chaotic 
variability of the model on the basis of power spectrum and 
Lyapunov exponents computations. Now we apply an empirical 
orthogonal function (EOF) analysis to determine the most 
significant structures in the fluctuations of the stream function 
fields. A set of EOFs for a time series is generated by deter- 
mining the eigenvalues and eigenfunctions of the covariance 
matrix which is defined by the stream function values on a grid 
with a spacing 18 ø latitude by 45 ø longitude. In our low-order 
model, only four independent stream function field compo- 
nents have been considered. Therefore only the first four eig- 
envalues are nonzero, which explain 99.99% of variance. The 
time series can be represented compactly by projecting the 
stream function field at any time level on the set of EOFs. The 
time series of amplitudes of the ith EOF are called the ith 
principal component (PC/) of the time series. 

In the following we discuss the EOF patterns and the power 
spectra of the corresponding PCs for Run 1. EOF 1 explains 
65.0% of the total variance of the stream function fields, EOF 
2 explains 32.4%, EOF 3 explains 2.3%, and EOF 4 explains 
0.3%. The structure of EOFs 1, 2, 3, and 4 is shown in Figure 
9. EOFs 1 and 2 describe regimes with well-pronounced wave 
structures. EOF 1 is in phase with the orography. In compar- 
ison to EOF 1, EOF 2 is shifted by 45 ø in longitude. EOFs 3 
and 4 describe the zonal regimes. 

The corresponding power spectra of PC 1, PC 2, PC 3, and 
PC 4 are shown in Figure 10. They specify the timescales of the 
EOF's variability. PC 1 (Figure 10a) shows well-pronounced 
maxima at time periods of 16 and approximately 25 days. 
Because the pattern of EOF 1 coincides with the contours of 
orography, these synoptic variations seem to be controlled by 
the orographic instability. In addition to these timescales there 
is a broad spectrum of frequency peaks in the interannual scale 
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Figure 5. Run 1: Climatology of the stream function qt (m2/s) for m = 2, n = 5, N = 3, h = 2500 m, 
and Rot = 0.07 (70øC) without a seasonal cycle. 

between 3 and 44 years. Although James and James [1992] 
investigated the time variability in the zonally averaged winds, 
the ultralow-frequency variability associated with the large- 
scale structure described by EOF 1 looks very similar to those 
obtained by these authors. 

In contrast, PC 2 does not show any long-term variability. Its 
frequency peaks are confined to synoptic scales between 10 
and 30 days. A coupling exists between PC 1 and PC 2 in these 
timescales due to the orographic instability. Both PC 3 and PC 
4 show ultralow-frequency variability similar to that of PC 1, 
connected with amplitude changes in the standing components 
of the large-scale circulation patterns. They are presented in 
Figures 10a, 10c, and 10d. In PC 3, frequency peaks occur in 
the synoptic timescales with maximum amplitudes at 8 days 

which are connected with the baroclinic instability of the zon- 
ally mean state present in EOF 3. 

Both EOF 1 and EOF 3 are responsible for the major part 
of ultralow-frequency variability. The EOFs show that this 
climate variability is caused by the interaction between the 
mean zonal flow, described by EOF 3 and the wave component 
EOF 1. EOF 2 is shifted by 45 ø longitude relative to EOF 1 and 
is involved only in the variability on synoptic timescales with 
periods smaller as 1 month. 

We will turn now to run 2 with the inclusion of a seasonal 

cycle. This was achieved by varying the equator-pole temper- 
ature difference sinusoidally in time with a period of 365 days 
and an amplitude of 20 K. It corresponds to E = 2/7 in the 
equation (13) and describes a radiative temperature difference 
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Q. 
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2.0 I I I I I 
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Figure 6. Convergence of the positive Lyapunov exponent. The time is given in nondimensional units. 
Number of days is time/2z'. 
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Figure 7. Temporal evolution for the first 10,000 days of 
integration of the zonal index a(t) in the chaotic regime for 
m = 2, n = 5, N = 3, h = 2500 m, and RoT: 0.07 (70øC). 

of 40 K between winter and summer following James and James 
[1992]. All other parameters are the same as for run 1. 

The averaged stream function for the model run 2 over 1100 
years is shown in Figure 11. Figure 12 shows the corresponding 
power spectrum P• computed on the basis of daily data series 
of the zonal index a(t). The seasonal cycle has been removed. 
As in Figure 8 there are two separated frequency maxima for 
periods of approximately 8 days and 25 days. In run 2 the 
model again shows a large variability on a decadal timescale. 
The most pronounced peaks occur near 3, 13, and 26 years. 

The seasonal cycle changed the individual frequency peaks in 
comparison with run 1, but the ultralow-frequency variability in 
the decadal timescale remains. 

The EOFs were computed using stream function fields with- 
out removing the seasonal cycle. This has the advantage for the 
case of PCs being considered as the variables of a dynamical 
system constructed on the basis of EOFs. Time series of PCs 
were computed, the seasonal cycle was excluded, and the 
power spectra were calculated. 

EOF I explains 59.9% of the total variance of the stream 
function fields, and EOFs 2, 3, and 4 explain 32.6%, 6.3%, and 
1.2%. The structure of EOFs 1, 2, 3, and 4 is shown in Figure 
13 and is quite similar to that of the EOF's from run I without 
the seasonal cycle. EOFs I and 2 again describe regimes with 
well-pronounced wave structures. EOF 4 describes a zonal 
regime. In comparison with run 1, the only difference occurs in 
EOF 3, which does not describe a zonal regime but a circula- 
tion state with a wave structure. 

The power spectra of PC 1, PC 2, PC 3, and PC 4 are 
presented in Figure 14. They show that the ultralow-frequency 
variability is described by PC I and PC 3. The mean seasonal 
cycle in PCs, not presented here, is much less pronounced in 
PC 2 than in PC I and in PC 3. However, an anticorrelation in 
seasonal cycles of PC I and PC 2 is still seen. It shows that the 
seasonal forcing influences the synoptic variability of the model. 

The intercomparison of both EOF analysis for run I and run 
2 leads to the suggestion that the attractor of the system re- 
mains structurally unchanged. A deformation does occur, 
which appears in the structures of EOF 3 and the power spec- 
tra. Its magnitude is proportional to the amplitude of the 
seasonal cycle of the equator to pole temperature difference. 
The additional run 3 with a smaller temperature amplitude of 
10 K for the seasonal forcing confirms this suggestion. 
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Figure 8. Run 1: Power spectrum P• as a function of the logarithm of frequency computed from 400,000 
days of a for m = 2, n = 5, N = 3, h = 2500 m, and RoT = 0.07 (70øC) without seasonal forcing. The 
power spectrum is shown by the bold black line, and the half width of the 95% confidence interval is shown 
by the thin gray line. 
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Figure 10. 
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Run 1: Power spectrum of (a) PC 1, (b) PC 2, (c) PC 3, and (d) PC 4. Notation as in Figure 8. 

For run 1 we calculated the total variance 02, of daily time 
series of a and also the portions of o2, in percents, which fall 
into four intervals of periods: 2 to 6 days, 6 days to 1.1 year, 1.1 
year to 11 years; and 11 years to 1100 years. Results are sum- 
marized in Table 1. On the basis of the PC 1 and PC 2 power 
spectra, which are quite similar in their high-frequency part, we 
are able to give a rough estimate of the percentage of the o2, 
that falls at periods of less than 1 year. It is twice as large as the 
percentage of EOF 2 and is equal to approximately 65%. The 
sum of percentages from the first two rows in Table 1 gives a 
very close estimate of 66%. In the case of seasonal forcing the 
total variance o2, has been increased 3.91 times. Its distribution 

on the aforementioned intervals of periods is shown in the 
second column of Table 1. 

5. Conclusions 

We constructed a simple baroclinic hemispheric low-order 
model of the atmosphere on the basis of quasi-geostrophic 
equations. They include orographic forcing in the long wave 
and thermal forcing in the zonal components. The model con- 
sists of eight components and uses the spherical harmonics Y•, 
Y•3, Y• 2. We estimated the bifurcation properties of the model 
as a function of orographic height h and meridional tempera- 
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Figure 10. (continued) 

ture difference between equator and pole AT. For realistic 
parameter values of h = 2500 m and AT = 70øC we found 
chaotic behavior. 

To determine this in a quantitative manner we computed the 
Lyapunov exponents. One Lyapunov exponent is positive, 
which indicates the chaotic behavior of the model. The 

Kaplan-Yorke dimension of the attractor has been determined 
as 5.3. This value is comparable to the estimated attractor 
dimension of 6 or 7 in a simplified general circulation model 
described by James and James [1992]. In this sense we con- 
structed a low-order model with the minimum of degrees of 
freedom needed for producing long-term climate variability. 

The temporal behavior of the model resembles the dynamics of 
the atmosphere with frequent transitions between different 
circulation states. 

Then the model was integrated with and without a seasonal 
cycle over 1100 years in the chaotic regime. The climate of the 
model by averaging over the entire time period was deter- 
mined. Power spectra computations of the zonal index showed 
frequency peaks between 3 and 44 years without seasonal cycle 
and between 3 and 26 years with included seasonal cycle. This 
ultralow-frequency variability in the decadal time is produced 
by the nonlinear atmospheric dynamics only. 

Empirical orthogonal function analysis of the stream func- 
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Figure 11. Run 2: Climatology of the stream function q, (m2/s) for m = 2, n = 5, N = 3, h = 2500 m, 
and RoT : 0.07 (70øC) with a seasonal cycle. 

tion fields together with the power spectra calculations of the 
principal components showed that the nonlinear interactions 
between EOFs 1, 3, and 4 determine the ultralow-frequency 
variability in the decadal timescale. The interactions between 
EOFs 1, 2, and 3 determine the low-frequency variability on 
timescales from 10 days up to a month. 

Well-pronounced maxima in the power spectra of the prin- 
cipal components occur at 16 and 25 days. Similar periods have 
been noted in observational data. This gives confidence in the 
conclusions concerning the ultralow-frequency variability of 
the modcl. 

Branstator and Held [1995] explained the 25-day pattern as a 
barotropically unstable wave dominated in most winters by Y4 • 
and sometimes by Y•. The latter wave has been used in our 
current model. In future investigations it would be interesting 
to run the model with the basic wave Y4 l used by Branstator and 
Held [1995]. 

The estimated temporal structure of ultra-low frequency 
variability in our model resembles in many features that of 
James and James [1992] in the dccadal timescale. 

Lorenz [1984, 1990] derived the chaotic behavior from an 
interaction between unstable transient waves and a thermally 
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Figure 12. Run 2: Power spectrum P,, as a function of the logarithm of frequency computed from 400,000 
days of a for m -- 2, n = 5, N = 3, h = 2500 m, and Ror = 0.07 (70øC) with seasonal forcing. The power 
spectrum is shown by the bold black line, and the half width of the 95% confidence interval is shown by the 
thin gray line. 
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Figure 14. 
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Run 2: Power spectrum of (a) PC 1, (b) PC 2, (c) PC 3, and (d) PC 4. Notation as in Figure 12. 

forced steady wave. James and James [1992] included neither 
orographic nor nonzonal thermal forcing. Contrary to these 
authors the chaotic behavior in our model is due to the inter- 
action between the orographically forced standing waves with 
the zonal mean state. We cannot exclude that the transients 
inherent in our model also play an important role for long- 
term climate variability. The inclusion of the seasonal cycle 
leads to structural changes of the EOF 3 and EOF 4 and in the 
high-frequency part of the power spectra of PC 3 and PC 4, 
indicating the important role of transients in the long-term 
variability. 

We have shown that long-term climatic variability on time- 
scales of decades can originate from energetic imbalances in 
the atmosphere from year to year due to nonlinear dynamics 
connected with wave mean flow interactions under the control 
of a seasonal course. A similar result was obtained by James 
and James [1992] in a spectral primitive equation model with 
moderate resolution of dynamical processes and by Pielke and 
Zeng [1994] in a low-resolution model. Our model is very 
simple, and it assumes only a thermal forcing on the zonal 
component and an orographic forcing in the long wave. We 
have got a chaotic solution behavior using realistic parameter 
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Table 1. Total Variance 0-2, for Different Intervals of 
Periods Without and With Seasonal Cycle of 
Nondimensional Amplitude E 

Period Run 1 (E = 0) Run 2 (E : 2/7) 

2 days to 6 days 13.0 2.6 
6 days to 1.1 year 53.4 92.7 
1.1 year to 11 years 27.2 4.1 
11 years to 1100 years 6.4 0.6 

values and obtained a natural variability in decadal time scales. 
It is possible to improve this simple model by including ba- 
roclinic unstable waves and nonlinear interaction between long 
and synoptic waves as was done by Dethloff and Schmitz [1992]. 
Currently, our model is too simple to be used directly for 
quantitative studies of long-term climatic changes. Neverthe- 
less, it confirms the idea that seasonal forcing together with 
nonlinear dynamical processes can generate long-term vari- 
ability between 10 ø and 102 years in the atmosphere without 
additional external forcing. 
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Appendix A 
The spectral form of equations (11)-(12) consists of the 

following 8 ordinary nonlinear differential equations (overdots 
denote the derivative d/dt): 

1 

2 [2 + A2(I - e)]/• + 7InA2(AB - KL) 

1 2( 1 4 C(o/ - + jinA 

2 2Q , -x ^ (13 -13)-0, (^•) 
1 

[N(N + 1) + A2(1 - e)]F - 7InqA2(AB - KL) 
1 1 

- 7inqA2(1 - e)HoK + •inqA2Ho B 

+ CN(N + 1)(F- G) + A2QG: 0, (A2) 

[•(• + 

+ [2(1 + ka) + •}A 2- kan(n + 1)]rnK 

- kmq[N(N + 1) - n(n + 1)]KF + mqA2(BF- KG) 

+ c•(• + ])(.4 - œ) + ^•Qœ: o, (^3) 

[n(n + 1) + A2(1 - e)]/• + ainA•L 

- [2(1 + ka) + /3A:- kan(n + 1)]mA 

+ krnq[N(N + 1) - n(n + 1)],4F 

-rnqA'(FL - AG) - arnA2(1 - 

+ mq A2( 1 - •) HoF - mq A2HoG + IBm A2H o 

+ Cn(n + 1)(K- B) + A:QB = 0, (A4) 

1 2) 2[2 + 
I 4 

- ernHoK - 
2 

-x(2 + ̂ •)Q(I3* - 13)- 0, (^5) 
1 

[N(N + 1) + A2(1 - 

- •gmqN(N + 1)H(X- 7ernqA2H(• ß (.4• - Kœ) 

- eCN(N + 1)(G-F) 

+ [N(N + 1) + A2]QG = 0, (A6) 

[n(n + 1) + A:(1 - e)]B + arn[n(n + 1) + A:]L - rn 

ß [[3n(n + 1) + /3A: + 2e(1 + ka) - ekan(n + 1)],4 

-mq[n(n + 1) + 

- ekinq[N(N + 1) - n(n + 1)],4F + eainn(n + 1)H0 

+ e/3inA2Ho- ernqn(n + 1)HoF- einqA2Ho G 

- •c•(• + •)(• - x) + Q[•(• + •) + ^•]•: 0, (^7) 

[•(• + 

ß B + m[13n(n + 1) + /3A 2 + 2e(1 + 

ekan(n + 1)]K + rnq[n(n + 1) + A2](BF - KG) 

+ ekmq[N(N + 1) - n(n + 1)]KF 

- eCn(n + 1)(L -A) + Q[n(n + 1) + A2]L = 0. (A8) 

Here, 

l q = (p•m)2(dpøN/dtx)dtx 
-1 

is the so-called interaction coefficient. When, for example, in = 2, 
n - 5, and N - 5, then q - (20/13)• • 3.608, and in the case 
of In = 2, n - 5, andN -- 3 one hasq • 3.310. 

Appendix B 
If variables a and/3 are the prescribed constants, then equa- 

tions (A1)-(A8) reduce to a system of six ordinary differential 
equations. Below, these are written in a symbolic form using a 
new timescale t• = [n(n + 1) + A2(1 - e)]-lt and for a 
special case of a - /3 = const, k = 1, n = N, and Ho = 0: 

Here 

1 

F' + 7 II(KL -AB) = O, 

A' + MK- NB + fi(BF- KG) = O, 

K' - MA + NL- fi(LF-AG) =0, 

' •X(KL -AB) = 0 G+• , 

B' - YA + ZL - X(LF-A G) =0, 

L' + YK- ZB + X(BF-KG)--O. 

(Bla) 

(Bib) 

(B•c) 

(Bid) 

(Ble) 

(Blf) 

H = InqA2; X: Inq[n(n + 1) + A2], 

M = rn[2(1 + a) + aA •- an(n + 1)], N = area 2, 

Y = rn[2e(1 + a) + aA • + an(n + 1)(1 - e)], 

Z: rna[n(n + 1) + A2], 

and the prime denotes a derivative d/dtl. 
Equations (B1) have the linearly independent integrals of 

motion, written in the following convenient form: 

[fig - XF = C•, 

7(A: + K :) - 2Nfi-1F + F 2= C2, 
l(B 2 -1 G G 2 • + L 2) -- 2YX + : C3, 

AL + BK- 2X-I(M + Z + C1)G + 2fiX-•G 2= C4. 

Their linear combinations reflect the mass, energy, and en- 
tropy conservation laws, and also the integral form of Ertel's 
potential vorticity conservation law. 

With the help of these integrals, equations (B1) reduce to 
the single equation 

G"+A•G •+A•G +A3= 0, (B2) 

where 

A1: 3X-I[X2N + n:y- (M + Z)XlI], 

A2 = (M + Z) 2- 4YN + X2C2 + fi2C3- X[IC4 

+ 2C,(M + Z) - C,(NXn -' + 2YnX-'), 
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1 

1 X(M + Z)C - YXC2- NXC3 + • XC•C4 + YX-•C• 2 A3 =• 4 

- IICiC3 + 2YNI-I-•C•. 

Given initial conditions, equation (B2) has an exact solution in 
terms of elliptic functions. Multiplying (B2) by G' and inte- 
grating in time, we obtain 

1 t 2 1 3 1 2 
7(G ) +7A•G + •A2G +A3G +A4=0, (B3) 

where a constant A 4 is determined by the initial conditions. In 
terms of variables 

1 (A2/Ai) U: t•(A1/6) •/2, A• > 0 •o = -G - 7 ' 

equation (B3) takes the normal Weierstrass' form [see 
Abramowitz and Stegun, 1964, and references therein] 

Here 

(d•o/dU) 2= 4•o 3- g2•o - 0'3- 

g2 = 3(•z12/•zll) 2-- 12(A3/A0, 

1(A2/A03 6(A2A3/A• 2) + 12(A4/A•) g3=• - . 

In particular, it is possible to express the period of nonlinear 
oscillations resulting in the model in terms of a complete el- 
liptic integral of the first kind. This property has been used for 
testing the numerical procedure outlined in the main part of 
the paper. 

Acknowledgments. We gratefully acknowledge the help of Eduard 
Claudius and Uwe Eggert (Alfred Wegener Institute (AWI), Potsdam) 
in solving numerical problems. We further thank Dirk Olbers and 
Christoph V61ker (AWI Bremerhaven), Annette Rinke and Justus 
Notholt (AWI Potsdam), and Jtirgen Kurths (University of Potsdam) 
for helpful discussions. The computations were carried out during two 
visits of M.V.K. as guest scientist at the AWI Potsdam. M.V.K. and 
I.A.P. are grateful for the support by the Russian Foundation for 
Fundamental Investigations (RFFI) under project grant 94-05-16356. 
The authors appreciate the helpful suggestions by the two anonymous 
reviewers, which have lead to great improvements. Alfred Wegener 
Institute for Polar and Marine Research contribution 777. 

References 

Abramowitz, M., and I. A. Stegun (Eds.), Handbook of Mathematical 
Functions, Graphs and Mathematical Tables,Appl. Math. Set., vol. 55, 
U.S. Govt. Print. Off., Washington, D.C., 1964. 

Alishayev, D. M., Dynamics of the two-dimensional baroclinic atmo- 
sphere, Izv. Acad. Sci. USSRAtmos. Oceanic Phys., Engl. Transl., 16, 
63-67, 1980. 

Alishayev, D. M., Large-scale dynamics of a two-dimensional ba- 
roclinic diabatic atmosphere, Izv. Acad. Sci. USSR Atmos. Oceanic 
Physics, Engl. Transl., 17, 93-97, 1981. 

Berger, A., M.-F. Loutre, and C. Tricot, Insolation and Earth's orbital 
periods, J. Geophys. Res., 98, 12,839-12,847, 1993. 

Birchfield, G. E., and M. Ghil, Climate evolution in the Pliocene and 
Pleistocene from marine sediment records and simulations: Internal 

variability versus orbital forcing, J. Geophys. Res., 98, 10,385-10,399, 
1993. 

Branstator, G., and I. Held, Westward propagating normal modes in 
the presence of stationary background waves, J. Atmos. Sci., 52, 
247-262, 1995. 

Charney, J. G., On a physical basis for numerical prediction of large- 
scale motions in the atmosphere, J. Meteorol., 6, 371-385, 1949. 

Dethloff, K., and G. Schmitz, Persistent circulation states and low- 
frequency variability in a nonlinear, baroclinic low-order model, 
Meteorol. Z., 1, 141-154, 1992. 

Dutton, J. A., The global thermodynamics of atmospheric motion, 
Tellus, 25, 89-111, 1973. 

Egger, J., Point vortices in a low order model of barotropic flow on the 
sphere, Q. J. R. Meteorol. Soc., 118, 533-552, 1992. 

Galin, M. B., and C. E. Kirichkov, Stability of atmospheric zonal 
circulation in a model including orography and the blocking prob- 
lem, (in Russian), Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 21, 
563-572, 1985. (English translation, Izv. Acad. Sci. USSR Atmos. 
Oceanic Phys., Engl. Transl., 21,433-439, 1985.) 

Ghil, M., Nonlinear approaches to low-frequency atmospheric vari- 
ability, in Dynamics of Low-Frequency Phenomena in the Atmosphere, 
edited by G. Branstator et al., pp. 603-714, Boulder, Colo., 1988. 

Haines, K., Low-frequency variability in atmospheric middle latitudes, 
Sum Geophys., 15, 1-63, 1994. 

James, I. N., and P.M. James, Spatial structure of ultra-low-frequency 
variability of the flow in a simple atmospheric circulation model, Q. 
J. R. Meteorol. Soc., 118, 1211-1233, 1992. 

Kaplan, J. L., and J. A. Yorke, Chaotic behavior of multidimensional 
difference equations, in Functional Differential Equations and Ap- 
proximation of Fixed Points, edited by H. O. Peitgen and H. O. 
Walther, pp. 228-237, Springer-Verlag, New York, 1979. 

Kurgansky, M. V., On the integral energy characteristics of the atmo- 
sphere (in Russian), Izv. Akad Izvestiya. Nauk. SSSR Fiz. Atmos. 
Okeana, 17, 923-933, 1981. (English translation, Izv. Acad. Sci. 
USSR Atmos. Oceanic Phys., Engl. Transl., 17, 686-692, 1981.) 

Lorenz, E. N., Irregularity: A fundamental property of the atmo- 
sphere, Tellus, Set. A, 36, 98-110, 1984. 

Lorenz, E. N., Can chaos and intransitivity lead to interannual vari- 
ability?, Tellus, Set. A, 42, 378-389, 1990. 

Marquet, P., On the concept of energy and available enthalpy: Appli- 
cation to atmospheric energetics, Q. J. R. Meteorol. Soc., 117, 449- 
475, 1991. 

Mayewski, P. A., L. D. Meeker, M. C. Morrison, M. S. Twickler, S. I. 
Whitlow, K. K. Ferland, D. A. Meese, M. R. Legrand, and J.P. 
Steffenson, Greenland ice core "signal" characteristics: An ex- 
panded view of climate change, J. Geophys. Res., 98, 12,839-12,847, 
1993. 

Pielke, R. A., and H. Zeng, Long-term variability of climate, J. Atmos. 
Sci., 51, 155-159, 1994. 

Pearce, R. P., On the concept of available potential energy, Q. J. R. 
Meteorol. Soc., 104, 737-755, 1978. 

Shimada, J., and T. Nagashima, A numerical approach to ergodic 
problem of dissipative dynamic systems, Prog. Theor. Phys., 61, 1605- 
1616, 1979. 

Tennekes, H., The general circulation of two-dimensional turbulent 
flow on a beta-plane, J. Atmos. Sci., 34, 702-712, 1977. 

Wallace, J. M., The climatological mean stationary waves: observa- 
tional evidence, in Large-Scale Processes in the Atmosphere, edited by 
B. J. Hoskins and R. P. Pearce, pp. 27-54, Academic, San Diego, 
Calif., 1983. 

F. M. Chmielewski, Meteorological Institute, Humboldt Universitfit, 
Mfiggelseedamm 256, D-12587 Berlin, Federal Republic of Germany. 

K. Dethloff and H. Gernandt, Alfred-Wegener-Institut ffir Polar- 
und Meeresforschung, Telegraphenberg A.43, D-14473 Potsdam, Fed- 
eral Republic of Germany. (e-mail: dethloff@awi-potsdam.de) 

W. Jansen, Department of Nonlinear Dynamics, Universitfit Potsdam, 
Am Neuen Palais 10, D-14415 Potsdam, Federal Republic of Germany. 

M. V. Kurgansky and I. A. Pisnichenko, Institute of Atmospheric 
Physics, Russian Academy of Sciences, Pyzhevsky 3, 109017 Moscow, 
Russia. 

(Received July 20, 1994; revised April 17, 1995; 
accepted August 29, 1995.) 


